Spelling suggestions: "subject:"protein:protein interaction"" "subject:"proteinprotein interaction""
81 |
A Modified Yeast One-hybrid Sytem to Investigate Protein-protein and Protein: DNA InteractionsChen, Gang 18 March 2010 (has links)
A modified yeast one-hybrid (MY1H) system has been developed for in vivo investigation of simultaneous protein-protein and protein:DNA interactions. The traditional yeast one-hybrid assay (Y1H) permits examination of one expressed protein targeting one DNA site, whereas our MY1H allows coexpression of two different proteins and examination of their activity at the DNA target. This single-plasmid based MY1H was validated by use of the DNA-binding protein p53 and its inhibitory partners, large T antigen (LTAg) and 53BP2. The MY1H system could be used to examine proteins that contribute inhibitory, repressive, coactivational or bridging functions to the protein under investigation, as well as potential extension toward library screening for identification of novel accessory proteins.
After development and validation of the MY1H with the p53/LTAg/53BP2 system, we applied the MY1H system to investigate the DNA binding activities of heterodimeric proteins, the bHLH/PAS domains of AhR and Arnt that target the xenobiotic response element (XRE). The AhR/Arnt:XRE interaction, which served as our positive control for heterodimeric protein binding of the XRE DNA site, showed negative signals in initial MY1H experiments. These false negative observations were turned into true positives by increasing the number of DNA target sites upstream of the reporter genes and increasing the number of activator domains fused to the two monomers. This methodology may help trouble-shooting false negatives stemming from unproductive transcription in yeast genetic assays, which can be a common problem.
In the study of XRE-binding proteins, two bHLHZ-like hybrid proteins, AhRJunD and ArntFos were designed and coexpressed in the MY1H and yeast two-hybrid (Y2H) systems; these proteins comprise the bHLH domains of AhR and Arnt fused to the leucine zipper (LZ) elements from bZIP proteins JunD and Fos, respectively. The in vivo assays revealed that in the absence of the XRE DNA site, heterodimers and homodimers formed, but in the presence of the nonpalindromic XRE, only heterodimers bound to the XRE and activated reporter transcription. The present results provide valuable information on DNA-mediated protein heterodimerization and specific DNA binding, as well as the relationship between protein structure and DNA-binding function.
|
82 |
BTB Domain Dimerization:Development of a Protein-protein Interaction AssayWang, Qingniao 22 September 2009 (has links)
In the human genome, 43 BTB (Bric-à-brac, Tramtrack, and Broad Complex) containing BTB-Zinc Finger proteins have been identified, many of which are transcription factors involved in cancer and development. These BTB domains have been shown to form homodimers and heterodimers which raise DNA binding affinity and specificity for transcription factors.
This project was to develop an efficient assay to systematically identify interactions between BTB domains. It combined a co-expression system, fluorescent protein tagging and Ni-NTA plate retention. It was concluded that fourteen analyzed BTB domains formed homodimers, but only certain BTB pairs formed heterodimers, such as BCL6 with Miz1 and Miz1 with RP58. To further understand the specificity of BTB domain interactions, more structural and sequence information is still needed. In conclusion, this assay provided a comprehensive detection method for BTB domain interaction mapping. The information generated provides candidates for further functional and structural studies.
|
83 |
BTB Domain Dimerization:Development of a Protein-protein Interaction AssayWang, Qingniao 22 September 2009 (has links)
In the human genome, 43 BTB (Bric-à-brac, Tramtrack, and Broad Complex) containing BTB-Zinc Finger proteins have been identified, many of which are transcription factors involved in cancer and development. These BTB domains have been shown to form homodimers and heterodimers which raise DNA binding affinity and specificity for transcription factors.
This project was to develop an efficient assay to systematically identify interactions between BTB domains. It combined a co-expression system, fluorescent protein tagging and Ni-NTA plate retention. It was concluded that fourteen analyzed BTB domains formed homodimers, but only certain BTB pairs formed heterodimers, such as BCL6 with Miz1 and Miz1 with RP58. To further understand the specificity of BTB domain interactions, more structural and sequence information is still needed. In conclusion, this assay provided a comprehensive detection method for BTB domain interaction mapping. The information generated provides candidates for further functional and structural studies.
|
84 |
On the Effect of Binding on Ubiquitin DynamicsPeters, Jan Henning 02 April 2013 (has links)
No description available.
|
85 |
Post-translational Regulations of FUSCA3 in Arabidopsis thalianaTsai, Allen Yi-Lun 13 August 2013 (has links)
Seed formation consists of two major stages: embryo pattern formation and maturation. During seed maturation, the embryo accumulates storage material, acquires desiccation tolerance, and enters a stage of dormancy. Genetic analyses have identified several master regulators that orchestrate late embryogenesis, including the B3-domain transcription factor FUSCA3 (FUS3). In Arabidopsis, FUS3 has been shown to be a central regulator of hormonal pathways; it positively regulates late embryogenesis by increasing abscisic acid (ABA) level while repressing gibberellin (GA) synthesis. In turn, FUS3 protein level is positively and negatively regulated by ABA and GA, respectively. However, the mechanism of how this regulation occurs has not been well characterized. In this study, FUS3 has been shown to be an unstable protein rapidly degraded by the proteasome through a PEST instablility motif. To further characterize the mechanisms involved in FUS3 homeostasis, FUS3-interacting proteins were identified. The SnRK1 kinase AKIN10 was shown to interact with and phosphorylate FUS3 at its N-terminus. Furthermore, overexpression of AKIN10 delays FUS3 degradation, suggesting AKIN10 positively regulates FUS3 protein accumulation. Overexpression of AKIN10 delays developmental phase transitions, and causes defects in lateral organ development. These defects were partially rescued by the loss-of-function fus3-3 mutation, suggesting FUS3 and AKIN10 genetically interact to regulate these developmental processes. SnRK1/AMPK/Snf1 kinases are regulators of energetic stress responses. Overexpression studies suggest both FUS3 and AKIN10 positively regulate ABA signaling, but differ in sugar responses during germination; AKIN10 mediates glucose sensitivity, while FUS3 regulates osmotic stress responses. Overexpression of AKIN10 and FUS3 results in glucose and osmotic stress hypersensitivities, respectively, both of which are partially dependent on de novo ABA synthesis. Thus, FUS3 and AKIN10 act in overlapping pathways and combine different environmental signals to generate a common ABA-dependent response. In summary, novel mechanisms that regulate FUS3 homeostasis and function were identified. A model explaining the interaction between FUS3 and AKIN10 during embryonic and vegetative development, and the function of these two central developmental regulators in hormonal and stress signaling pathways is discussed.
|
86 |
Post-translational Regulations of FUSCA3 in Arabidopsis thalianaTsai, Allen Yi-Lun 13 August 2013 (has links)
Seed formation consists of two major stages: embryo pattern formation and maturation. During seed maturation, the embryo accumulates storage material, acquires desiccation tolerance, and enters a stage of dormancy. Genetic analyses have identified several master regulators that orchestrate late embryogenesis, including the B3-domain transcription factor FUSCA3 (FUS3). In Arabidopsis, FUS3 has been shown to be a central regulator of hormonal pathways; it positively regulates late embryogenesis by increasing abscisic acid (ABA) level while repressing gibberellin (GA) synthesis. In turn, FUS3 protein level is positively and negatively regulated by ABA and GA, respectively. However, the mechanism of how this regulation occurs has not been well characterized. In this study, FUS3 has been shown to be an unstable protein rapidly degraded by the proteasome through a PEST instablility motif. To further characterize the mechanisms involved in FUS3 homeostasis, FUS3-interacting proteins were identified. The SnRK1 kinase AKIN10 was shown to interact with and phosphorylate FUS3 at its N-terminus. Furthermore, overexpression of AKIN10 delays FUS3 degradation, suggesting AKIN10 positively regulates FUS3 protein accumulation. Overexpression of AKIN10 delays developmental phase transitions, and causes defects in lateral organ development. These defects were partially rescued by the loss-of-function fus3-3 mutation, suggesting FUS3 and AKIN10 genetically interact to regulate these developmental processes. SnRK1/AMPK/Snf1 kinases are regulators of energetic stress responses. Overexpression studies suggest both FUS3 and AKIN10 positively regulate ABA signaling, but differ in sugar responses during germination; AKIN10 mediates glucose sensitivity, while FUS3 regulates osmotic stress responses. Overexpression of AKIN10 and FUS3 results in glucose and osmotic stress hypersensitivities, respectively, both of which are partially dependent on de novo ABA synthesis. Thus, FUS3 and AKIN10 act in overlapping pathways and combine different environmental signals to generate a common ABA-dependent response. In summary, novel mechanisms that regulate FUS3 homeostasis and function were identified. A model explaining the interaction between FUS3 and AKIN10 during embryonic and vegetative development, and the function of these two central developmental regulators in hormonal and stress signaling pathways is discussed.
|
87 |
New approaches to stapled peptides targeting the p53-MDM2 interactionSaunders, Alexander William January 2016 (has links)
Recent approaches to constraining peptide sequences into more structurally-defined α- helical secondary structures, so-called peptide stapling, are discussed. Stapled peptides are a class of therapeutics that have been shown to more effectively target protein-protein interactions, which are harder to target using a classical small-molecule therapeutic approach. Stapling a peptide constrains it into a well-defined secondary structure. This more accurately mimics the protein-protein interaction making the peptide a more viable therapeutic. Starting from the p53-MDM2 interaction, a protein-protein interaction with important implications in cell health, a known peptidyl inhibitor of this interaction was stapled and analysed for increased α-helicity. This was achieved by using monomers that utilise the copper (I) alkyne azide cycloaddition as a cross-linking methodology, which has been less well researched in the context of peptide stapling. The viability of a novel stapled peptomer inhibitor approach, accomplished using a new, optimised monomer synthesis, is investigated. Additionally, the synthesis of a ligand series designed for use in the copper(I) alkyne azide cycloaddition is also discussed.
|
88 |
Development of novel modulators of protein-protein interactions associated with cancerHealy, Alan R. January 2014 (has links)
An understanding of the underlying mechanisms by which proteins engage and communicate within the complex cellular environment is critical to the elucidation of the molecular basis of disease states and the development of safer, more efficacious drug therapies. Diverse cellular functions, including replication, transcription, cell growth and intracellular signal transduction, are governed by extensive networks of protein-protein interactions (PPIs). Disruption of the finely-tuned cellular networks due to the formation of aberrant or unregulated PPIs is implicated in the development and progression of cancer. As a result, over the last decade, PPI modulation has developed as an attractive molecular target for novel cancer therapies and as a powerful research tool in chemical biology to provide insight into the cellular transformations involved in carcinogenesis. Chapter 1 provides a review of the physiological importance of PPIs and the role they play in the development and progression of cancer. A summary of the challenges associated with targeting PPIs is given, highlighting the changing perception regarding the drugabbility of PPIs and the technological and conceptual advances driving this transformation. A brief overview of the approaches used to identify PPI modulators links the reader to the appropriate chapter for further discussion and utilisation of a selection of these methods. Chapter 2 describes the application of a virtual screening approach to discover PPI modulators. In particular, the development of an in silico – in vitro screening method to identify modulators of the protein interactome of the AAA+ protein reptin. The synthesis and optimisation of two hit compounds is outlined, with a discussion of their predicted binding modes, mode of action, potential as chemical tools and lead molecules for an anti-cancer drug discovery programme. Chapter 3 highlights the potential to discover PPI modulators from Nature's rich source of structurally complex, bioactive molecules. A synthetic approach to a sub-family of tetramic acid natural products is outlined, involving the development of a short, asymmetric synthesis of unnatural 4,4-disubstituted glutamic acid derivatives. The first total syntheses of the potent siderophore harzianic acid and the PAC3 PPI inhibitor JBIR-22 are reported. In addition, the potential role of a Diels-Alderase enzyme in the biosynthesis of JBIR-22 and the development of a chiral catalysed intramolecular Diels-Alder of an advanced JBIR-22 intermediate is investigated. Chapter 4 discusses the use of structure based design techniques in the development of PPI modulators. The process involved in the design of two series of inhibitors of PICK PDZ domain mediated interactions is outlined. This leads to the development and optimisation of synthetic routes to both series of inhibitors, including the utilisation of a strategic sp3-sp2 cross coupling reaction. Finally, preliminary biological assessment of the inhibitors is reported. Chapter 5 gives a brief overview of high-throughput screening (HTS) methods used to identify PPI modulators. The utilisation of a forward chemical genetics screen to identify the p53 activator MJ05 is described. A racemic and asymmetric route to MJ05 is developed and biochemical analysis of the two enantiomers of MJ05 is reported including the investigation of MJ05 as an adjuvant therapy for the treatment of cancer. Chapter 6 provides a general overview of the outcome of the different approaches used in this research to discover PPI modulators. Particular emphasis is placed on the development of chemical tools for the elucidation and dissection of the physiological role of protein-protein interactions and the identification of novel drug targets, in addition to the identification of lead molecules for PPI drug development programmes.
|
89 |
Caracterização das interações macromoleculares das proteínas envolvidas na síntese de selenocisteínas em Escherichia coli / Characterization of the macromolecular interactions of proteins involved in the synthesis of selenocysteines in Escherichia coliVitor Hugo Balasco Serrão 03 March 2017 (has links)
O estudo de processos de tradução do código genético em proteínas desperta o interesse pelo seu papel central no metabolismo celular, em particular, o estudo da via de síntese de novos aminoácidos, como a selenocisteína e a pirrolisina, que resultam na expansão do código genético dos 20 aminoácidos canônicos para um total de 22 aminoácidos. A selenocisteína (Sec, U) é um aminoácido que representa a principal forma biológica do elemento selênio e sua incorporação ocorre através de um processo cotraducional em selenoproteínas como resposta ao códon UGA em fase, usualmente interpretado como códon de parada. Essa incorporação requer uma complexa maquinaria molecular distinta entre os três domínios da vida em que as selenoproteínas estão presentes: Bactéria, Arquéia e Eucária. Em Escherichia coli, a via se inicia com a aminoacilação do tRNA específico para a incorporação de selenocisteínas (SelC, tRNASec) com um resíduo de L-serina pela seril-tRNA sintetase (SerRS) formando o tRNA carregado Ser-tRNA[Ser]Sec que é entregue ao complexo homodecamérico selenocisteína sintase (SelA) responsável pela conversão Ser-Sec utilizando a forma biológica de selênio entregue pela enzima selenofosfato sintetase (SelD). Uma vez carregado com L-selenocisteína, o Sec-tRNASec é então carreado pelo fator de elongação específico para selenocisteínas (SelB) para a sua incorporação na cadeia polipeptídica nascente na posição UGA adjunta ao elemento SECIS (SElenoCysteine Insertion Sequence), uma estrutura em grampo presente no RNA mensageiro que indica o códon de inserção de selenocisteínas. Uma vez que elementos contendo selênio são tóxicos para o ambiente celular, interações entre as enzimas da via se fazem necessárias, onde as enzimas participantes em procariotos são conhecidas e caracterizadas individualmente, no entanto, suas interações macromoleculares nas diferentes etapas ainda não foram caracterizadas. Este projeto visa à caracterização macromolecular e estrutural das interações entre as enzimas SelA e SelB com os RNAs participantes tRNASec e SECIS além do ribossomo de E. coli. Para isso, amostras de SelA, SelB, tRNASec, SECIS e ribossomo foram obtidas através de diferentes metodologias. Para SelA e tRNASec foram utilizados protocolos já estabelecidos enquanto que, para SelB, fez-se necessário a otimização do protocolo previamente publicado e, consequentemente, nova caracterização biofísica através de metodologias como dicroísmo dircular (CD) e fluorescência intrínseca (IFS). Para análise das interações, medidas de espectroscopia de anisotropia de fluorescência (FAS), ultracentrifugação analítica (AUC) e calorimetria de varredura diferencial (DSC) foram utilizadas para determinação dos parâmetros de interação dos diferentes complexos estudados. Somado a isso, experimentos de cinética GTPásica foram realizados na formação dos complexos e, além disso, foram gerados modelos estruturais utilizando diferentes metodologias como espalhamento de raios-X a baixo ângulo (SAXS) além de estudos por microscopia eletrônica de transmissão (TEM). Os estudos propostos irão auxiliar no entendimento do mecanismo de incorporação deste aminoácido em bactérias bem como nos demais domínios da vida além de elucidar o mecanismo sequencial de eventos, provendo conhecimento e desenvolvendo metodologias para sistemas complexos de interação proteína-proteína e proteína-RNA. / The study of genetic code processes in proteins is a central role in cell metabolism, in particular the study of the synthesis pathway of new amino acids, such as selenocysteine and pyrrolisine, which resulted in the expansion of the genetic code of the 20 canonical amino acids for 22 amino acids. Selenocysteine (Sec, U) is an amino acid that represents a major biological form of selenium element and its incorporation through a co-translational process in selenoproteins in response to the in-phase UGA-codon, usually interpreted as stop-codon. This incorporation requires a complex molecular machinery distinct between the three domains of life in which, as selenoprotein has present: Bacteria, Archaea and Eukaria. In Escherichia coli, an initiation pathway with an aminoacylation of the tRNA specific for the incorporation of selenocysteines (SelC, tRNASec) with an L-serine residue by seril-tRNA synthetase (SerRS) resulting in the charged tRNA Ser-tRNA[Ser] Sec that is delivered to the homodecameric complex selenocysteine synthase (SelA), responsible for Ser-Sec conversion using the biological form of selenium delivered by the enzyme selenophosphate synthetase (SelD). Once loaded with L-selenocysteine, Sec-tRNASec is then carried by the selenocysteine-specific elongation factor (SelB) for incorporation into the nascent polypeptide chain at the UGA position attached to the SECIS (SElenoCysteine Insertion Sequence) element, staple structure that indicates the insertion codon of selenocysteines. Since elements containing selenium are toxic to the cell, interactions between how pathway enzymes are made, where the enzymes participating in concepts are known and characterized individually, however, their macromolecular interactions in the different steps have not yet been characterized. This project aims at the macromolecular and structural characterization of the interactions between SelA and SelB enzymes with the RNAS tRNASec and SECIS participants in addition to the E. coli ribosome. For this, as samples of SelA, SelB, tRNASec, SECIS and ribosome were obtained through different methodologies. For SelA and tRNASec, protocols were used to determine parameters for SelB, it was necessary to optimize a previously published protocol and, consequently, a new biophysical characterization through methodologies such as circular dichroism (CD) and intrinsic fluorescence spectroscopy (IFS). To analyze the interactions, measurements of fluorescence anisotropy spectroscopy (FAS), analytical ultracentrifugation (AUC) and differential scanning calorimetry (DSC) were used to determine the interaction parameters of different complexes studied. In addition, GTPases activity experiments were carried out in the formation of the complexesand, in addition, we have generated models that characterize different methodologies such as small angles X-ray scattering (SAXS) and transmission electron microscopy (TEM). The proposed studies will aid in understanding the mechanism of incorporation of this amino acid into bacteria as well as the other domains of life besides elucidating the sequential mechanism of events, providing knowledge and development of methodologies for complex protein-protein and RNA-protein interaction systems.
|
90 |
Interação não canônica entre septinas: a análise da interação na interface G entre SEPT3 e septinas do grupo II / Non-canonical septins interactions: analysis of the interaction via G interface of SEPT3 and group II septinsPaola Lanzoni 26 May 2017 (has links)
As septinas compõem o quarto componente do citoesqueleto das células eucarióticas, atrás da actina, miosina e filamentos intermediários. São proteínas filamentosas que se arranjam em forma de fibras e anéis, desempenhando um papel estrutural na célula. Os seres humanos expressam 13 septinas, que são divididas em 4 grupos diferentes de acordo com sua estrutura primária: grupo I (SEPT3, SEPT9, SEPT12); grupo II (SEPT6, SEPT8, SEPT10, SEPT11, SEPT14); grupo III (SEPT1, SEPT2, SEPT4, SEPT5) e grupo IV (SEPT7), sendo que SEPT13 foi caracterizada como um pseudogene de SEPT7. O filamento fisiológico mais bem estudado é composto por SEPT2-SEPT6-SEPT7-SEPT9 (nesta exata sequência), e é usado como a base para a descrição da formação canônica, onde se acredita que septinas do mesmo grupo ocupam o mesmo lugar no filamento. Entretanto, ensaios de duplo-híbrido identificaram muitas interações não canônicas inesperadas entre septinas como SEPT9-SEPT6 e SEPT9-SEPT8, sugerindo estes também possam existir in vivo. Além destes, estudos mostraram a existência de interações entre septinas do grupo I e grupo II, e especialmente no caso SEPT11-SEPT12, a interação deixa de existir ao inserir uma mutação sítio-dirigida na interface G destas proteínas. O presente trabalho investiga a interação entre SEPT3, uma septina do grupo I, com todas aquelas do grupo II. Esta interação foi estudada por análises de coexpressão e copurificação em resina de afinidade ao cobalto, onde apenas a SEPT3 possuía uma extensão de seis histidinas em seu N-terminal. Esta primeira análise mostrou que SEPT3 não foi copurificada com todos os membros do grupo II dando uma clara evidência de variação de afinidade dentro do grupo. Usando esta abordagem, SEPT6, SEPT10 e SEPT14 não mostraram interação com SEPT3, enquanto SEPT8 e SEPT11 copurificaram com SEPT3, mas não em concentrações estequiométricas. Para os complexos SEPT3-SEPT8 e SEPT3-SEPT11, uma segunda etapa de purificação foi realizada por meio de cromatografia de exclusão molecular, onde um pico de grande variância em relação à média indicou um valor de massa molecular entre monômeros e dímeros. Os mesmos, quando avaliados por espalhamento de luz a múltiplos ângulos mostraram variação na massa molecular ao longo do pico de eluição conforme ele era eluído. Tal variação era compatível com a eluição de dímeros no início até monômeros no final. Os estudos da interação entre SEPT3-SEPT8 por ultracentrifugação analítica indicou uma tendência de associação em altas concentrações das proteínas, compatível com a constante de dissociação determinada por termoforese em microescala, na ordem de dezenas de micromolar. Tais resultados levantaram questões acerca da relevância fisiológica destes complexos e reforçam a importância de um estudo mais aprofundado na formação dos complexos não canônicos de septinas para o desenvolvimento celular. / The septins are accepted to be the fourth cytoskeleton component of the eukaryotic cells, after actin, myosin and intermediate filaments. They are filament forming proteins that are organized in fibers and rings, having a structural role in the cell. Humans express 13 septins, which are divided into 4 different groups according to their primary structure: group I (SEPT3, SEPT9, SEPT12); group II (SEPT6, SEPT8, SEPT10, SEPT11, SEPT14); group III (SEPT1, SEPT2, SEPT4, SEPT5) e group IV (SEPT7). SEPT13 was later characterized as a SEPT7 pseudogene. The best characterized filament is built up from SEPT2-SEPT6-SEPT7-SEPT9 (in this exact sequence), and is used as a basis for the description of the so-called canonical arrangement, which accepts that septins from the same group can occupy the same position within the filament. However yeast two-hybrid assays identified several unexpected interactions such as SEPT9-SEPT6 and SEPT9-SEPT8, raising the possibility that these could also exist in vivo. Furthermore, studies have shown the existence of interactions between group I and group II, and especially in the SEPT11-SEPT12, the interaction dissolves when a mutation in the G interface is inserted. The present work investigates the interaction between SEPT3, a group I septin, with all of those from group II. This interaction was studied through co-expression and co-purification methods using metal affinity chromatography, where only the SEPT3 contained the six histidines extention. This initial analysis showed that SEPT3 did not co-purify with all group II members, clearly pointing to variability in the affinity within group. Using this approach SEPT6, SEPT10 e SEPT14 showed no interaction with SEPT3, whilst SEPT8 and SEPT11 co-purified with SEPT3, but not in stoichiometric concentrations. For the SEPT3-SEPT8 and SEPT3-SEPT11 complexes, a second purification stage was performed using size exclusion chromatography, where a broad peak was observed corresponding to a molecular mass value which was intermediate between a dimer and a monomer. The same complexes, when evaluated by multiple angle light scattering revealed a variation in the molecular mass across the peak as it eluted. Such variation was compatible with elution of dimers at the beginning and monomers at the end. Studies for the SEPT3-SEPT8 interaction via analytical ultracentrifugation suggested a trend to associate in high protein concentration, consistent with the dissociation constant found by microscale thermophoresis, which was of the order of ten micromolar. The results raise questions concerning the physiological relevance of these complexes and reinforce the importance of further studies on the non-canonical assembly of septin complexes for cellular development.
|
Page generated in 0.1183 seconds