• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 14
  • 2
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 10
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Sphingosine 1-phosphate enhances excitability of sensory neurons through sphingosine 1-phosphate receptors 1 and/or 3

Li, Chao January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that has proven to be an important signaling molecule both as an extracellular primary messenger and as an intracellular second messenger. Extracellular S1P acts through a family of five S1P receptors, S1PR1-5, all of which are G protein-coupled receptors associated with different G proteins. Previous work from our laboratory shows that externally applied S1P increases the excitability of small-diameter sensory neurons by enhancing the action potential firing. The increased neuronal excitability is mediated primarily, but not exclusively, through S1PR1. This raises the question as to which other S1PRs mediate the enhanced excitability in sensory neurons. To address this question, the expression of different S1PR subtypes in small-diameter sensory neurons was examined by single-cell quantitative PCR. The results show that sensory neurons express the mRNAs for all five S1PRs, with S1PR1 mRNA level significantly greater than the other subtypes. To investigate the functional contribution of other S1PRs in augmenting excitability, sensory neurons were treated with a pool of three individual siRNAs targeted to S1PR1, R2 and R3. This treatment prevented S1P from augmenting excitability, indicating that S1PR1, R2 and/or R3 are essential in mediating S1P-induced sensitization. To study the role of S1PR2 in S1P-induced sensitization, JTE-013, a selective antagonist at S1PR2, was used. Surprisingly, JTE-013 by itself enhanced neuronal excitability. Alternatively, sensory neurons were pretreated with FTY720, which is an agonist at S1PR1/R3/R4/R5 and presumably downregulates these receptors. FTY720 pretreatment prevented S1P from increasing neuronal excitability, suggesting that S1PR2 does not mediate the S1P-induced sensitization. To test the hypothesis that S1PR1 and R3 mediate S1P-induced sensitization, sensory neurons were pretreated with specific antagonists for S1PR1 and R3, or with siRNAs targeted to S1PR1 and R3. Both treatments blocked the capacity of S1P to enhance neuronal excitability. Therefore my results demonstrate that the enhanced excitability produced by S1P is mediated by S1PR1 and/or S1PR3. Additionally, my results indicate that S1P/S1PR1 elevates neuronal excitability through the activation of mitogen-activated protein kinase kinase. The data from antagonism at S1PR1 to regulate neuronal excitability provides insight into the importance of S1P/S1PR1 axis in modulating pain signal transduction.
42

Regulation of glucose homeostasis by Doc2b and Munc18 proteins.

Ramalingam, Latha January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Glucose homeostasis is maintained through the coordinated actions of insulin secretion from pancreatic beta cells and insulin action in peripheral tissues. Dysfunction of insulin action yields insulin resistance, and when coupled with altered insulin secretion, results in type 2 diabetes (T2D). Exocytosis of intracellular vesicles, such as insulin granules and glucose transporter (GLUT4) vesicles is carried out by similar SNARE (soluble NSF attachment receptor) protein isoforms and Munc18 proteins. An additional regulatory protein, Doc2b, was implicated in the regulation of these particular exocytosis events in clonal cell lines, but relevance of Doc2b in the maintenance of whole body glucose homeostasis in vivo remained unknown. The objective of my doctoral work was to delineate the mechanisms underlying regulation of insulin secretion and glucose uptake by Doc2b in effort to identify new therapeutic targets within these processes for the prevention and/or treatment of T2D. Towards this, mice deficient in Doc2b (Doc2b-/- knockout mice) were assessed for in vivo alterations in glucose homeostasis. Doc2b knockout mice were highly susceptible to preclinical T2D, exhibiting significant whole-body glucose intolerance related to insulin secretion insufficiency as well as peripheral insulin resistance. These phenotypic defects were accounted for by defects in assembly of SNARE complexes. Having determined that Doc2b was required in the control over whole body glycemia in vivo, whether Doc2b is also limiting for these mechanisms in vivo was examined. To study this, novel Doc2b transgenic (Tg) mice were engineered to express ~3 fold more Doc2b exclusively in pancreas, skeletal muscle and fat tissues. Compared to normal littermate mice, Doc2b Tg mice had improved glucose tolerance, related to concurrent enhancements in insulin mumsecretion from beta cells and insulin-stimulated glucose uptake in the skeletal muscle. At the molecular level, Doc2b overexpression promoted SNARE complex assembly, increasing exocytotic capacities in both cellular processes. These results unveiled the concept that intentional elevation of Doc2b could provide a means of mitigating two primary aberrations underlying T2D development.
43

Differentiation and contractility of colon smooth muscle under normal and diabetic conditions

Touw, Ketrija 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intestinal smooth muscle development involves complex transcriptional regulation leading to cell differentiation of the circular, longitudinal and muscularis mucosae layers. Differentiated intestinal smooth muscle cells express high levels of smooth muscle-specific contractile and regulatory proteins, including telokin. Telokin is regulatory protein that is highly expressed in visceral smooth muscle. Analysis of cis-elements required for transcriptional regulation of the telokin promoter by using hypoxanthine-guanine phosphoribosyltransferase (Hprt)-targeted reporter transgenes revealed that a 10 base pair large CC(AT)₆GG ciselement, called CArG box is required for promoter activity in all tissues. We also determined that an additional 100 base pair region is necessary for transgene activity in intestinal smooth muscle cells. To examine how transcriptional regulation of intestinal smooth muscle may be altered under pathological conditions we examined the effects of diabetes on colonic smooth muscle. Approximately 76% of diabetic patients develop gastrointestinal (GI) symptoms such as constipation due to intestinal dysmotility. Mice were treated with low-dose streptozotocin to induce a type 1 diabetes-like hyperglycemia. CT scans revealed decreased overall GI tract motility after 7 weeks of hyperglycemia. Acute (1 week) and chronic (7 weeks) diabetic mice also had decreased potassium chloride (KCl)-induced colon smooth muscle contractility. We hypothesized that decreased smooth muscle contractility at least in part, was due to alteration of contractile protein gene expression. However, diabetic mice showed no changes in mRNA or protein levels of smooth muscle contractile proteins. We determined that the decreased colonic contractility was associated with an attenuated intracellular calcium increase, as measured by ratio-metric imaging of Fura-2 fluorescence in isolated colonic smooth muscle strips. This attenuated calcium increase resulted in decreased myosin light chain phosphorylation, thus explaining the decreased contractility of the colon. Chronic diabetes was also associated with increased basal calcium levels. Western blotting and quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed significant changes in calcium handling proteins in chronic diabetes that were not seen in the acute state.These changes most likely reflect compensatory mechanisms activated by the initial impaired calcium response. Overall my results suggest that type 1 diabetes in mice leads to decreased colon motility in part due to altered calcium handling without altering contractile protein expression.
44

Functional Insights Into Oncogenic Protein Tyrosine Phosphatases By Mass Spectrometry

Walls, Chad Daniel 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Phosphatase of Regenerating Liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when overexpressed. To date, the molecular basis for PRL3 function remains an enigma, justifying the use of 'shot-gun'-style phosphoproteomic strategies to define the PRL3-mediated signaling network. On the basis of aberrant Src tyrosine kinase activation following ectopic PRL3 expression, phosphoproteomic data reveal a signal transduction network downstream of a mitogenic and chemotactic PDGF (α and β), Eph (A2, B3, B4), and Integrin (β1 and β5) receptor array known to be utilized by migratory mesenchymal cells during development and acute wound healing in the adult animal. Tyrosine phosphorylation is present on a multitude of signaling effectors responsible for Rho-family GTPase, PI3K-Akt, Jak-STAT3, and Ras-ERK1/2 pathway activation, linking observations made by the field as a whole under Src as a primary signal transducer. Our phosphoproteomic data paint the most comprehensive picture to date of how PRL3 drives pro-metastatic molecular events through Src activation. The Src-homology 2 (SH2) domain-containing tyrosine phosphatase 2 (SHP2), encoded by the Ptpn11 gene, is a bona-fide proto-oncogene responsible for the activation of the Ras/ERK1/2 pathway following mitogen stimulation. The molecular basis for SHP2 function is pTyr-ligand-mediated alleviation of intramolecular autoinhibition by the N-terminal SH2 domain (N-SH2 domain) upon the PTP catalytic domain. Pathogenic mutations that reside within the interface region between the N-SH2 and PTP domains are postulated to weaken the autoinhibitory interaction leading to SHP2 catalytic activation in the open conformation. Conversely, a subset of mutations resides within the catalytic active site and cause catalytic impairment. These catalytically impaired SHP2 mutants potentiate the pathogenesis of LEOPARD-syndrome (LS), a neuro-cardio-facial-cutaneous (NCFC) syndrome with very similar clinical presentation to related Noonan syndrome (NS), which is known to be caused by gain-of-function (GOF) SHP2 mutants. Here we apply hydrogen-deuterium exchange mass spectrometry (H/DX-MS) to provide direct evidence that LS-associated SHP2 mutations which cause catalytic impairment also weaken the autoinhibitory interaction that the N-SH2 domain makes with the PTP domain. Our H/DX-MS study shows that LS-SHP2 mutants possess a biophysical property that is absolutely required for GOF-effects to be realized, in-vivo.
45

mTOR regulates Aurora A via enhancing protein stability

Fan, Li 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis. Dysregulation of mTOR signaling occurs in many human cancers and its inhibition causes arrest at the G1 cell cycle stage. However, mTOR’s impact on mitosis (M-phase) is less clear. Here, suppressing mTOR activity impacted the G2-M transition and reduced levels of M-phase kinase, Aurora A. mTOR inhibitors did not affect Aurora A mRNA levels. However, translational reporter constructs showed that mRNA containing a short, simple 5’-untranslated region (UTR), rather than a complex structure, is more responsive to mTOR inhibition. mTOR inhibitors decreased Aurora A protein amount whereas blocking proteasomal degradation rescues this phenomenon, revealing that mTOR affects Aurora A protein stability. Inhibition of protein phosphatase, PP2A, a known mTOR substrate and Aurora A partner, restored mTOR-mediated Aurora A abundance. Finally, a non-phosphorylatable Aurora A mutant was more sensitive to destruction in the presence of mTOR inhibitor. These data strongly support the notion that mTOR controls Aurora A destruction by inactivating PP2A and elevating the phosphorylation level of Ser51 in the “activation-box” of Aurora A, which dictates its sensitivity to proteasomal degradation. In summary, this study is the first to demonstrate that mTOR signaling regulates Aurora-A protein expression and stability and provides a better understanding of how mTOR regulates mitotic kinase expression and coordinates cell cycle progression. The involvement of mTOR signaling in the regulation of cell migration by its upstream activator, Rheb, was also examined. Knockdown of Rheb was found to promote F-actin reorganization and was associated with Rac1 activation and increased migration of glioma cells. Suppression of Rheb promoted platelet-derived growth factor receptor (PDGFR) expression. Pharmacological inhibition of PDGFR blocked these events. Therefore, Rheb appears to suppress tumor cell migration by inhibiting expression of growth factor receptors that in turn drive Rac1-mediate actin polymerization.
46

The inhibition of mammary epithelial cell growth by the long isoform of Angiomotin

Adler, Jacob J. 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammary ductal epithelial cell growth is controlled by microenvironmental signals in serum under both normal physiological settings and during breast cancer progression. Importantly, the effects of several of these microenvironmental signals are mediated by the activities of the tumor suppressor protein kinases of the Hippo pathway. Canonically, Hippo protein kinases inhibit cellular growth through the phosphorylation and inactivation of the oncogenic transcriptional co-activator Yes-Associated Protein (YAP). This study defines an alternative mechanism whereby Hippo protein kinases induce growth arrest via the phosphorylation of the long isoform of Angiomotin (Amot130). Specifically, serum starvation is found to activate the Hippo protein kinase, Large Tumor Suppressor (LATS), which phosphorylates the adapter protein Amot130 at serine-175. Importantly, wild-type Amot130 potently inhibits mammary epithelial cell growth, unlike the Amot130 serine-175 to alanine mutant, which cannot be phosphorylated at this residue. The growth-arrested phenotype of Amot130 is likely a result of its mechanistic response to LATS signaling. Specifically, LATS activity promotes the association of Amot130 with the ubiquitin ligase Atrophin-1 Interacting Protein 4 (AIP4). As a consequence, the Amot130-AIP4 complex amplifies LATS tumor suppressive signaling by stabilizing LATS protein steady state levels via preventing AIP4-targeted degradation of LATS. Additionally, AIP4 binding to Amot130 leads to the ubiquitination and stabilization of Amot130. In turn, the Amot130-AIP4 complex signals the ubiquitination and degradation of YAP. This inhibition of YAP activity by Amot130 requires both AIP4 and the ability of Amot130 to be phosphorylated by LATS. Together, these findings significantly modify the current view that the phosphorylation of YAP by Hippo protein kinases is sufficient for YAP inhibition and cellular growth arrest. Based upon these results, the inhibition of cellular growth in the absence of serum more accurately involves the stabilization of Amot130 and LATS, which together inhibit YAP activity and mammary epithelial cell growth.

Page generated in 0.4243 seconds