• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An algorithm for two-dimensional density reconstruction in proton computed tomography (PCT)

Tafas, Jihad 01 January 2007 (has links)
The purpose of this thesis is to develop an optimized and effective iterative reconstruction algorithm and hardware acceleration methods that work synonymously together through reconstruction in proton computed tomography, which accurately maps the electron density.
2

Optimized and integrated alignment system for functional proton radiosurgery

Shihadeh, Fadi Easa 01 January 2007 (has links)
In this thesis work, a system for proton beam alignment was studied and optimized in many of its functional areas. The resulting system was named Positioning Alignment Control System (PACS). The PACS system is an integrated and efficient system as a result of the work done on it in the course of this thesis work.
3

Software-based gradient nonlinearity distortion correction

Lee, Thomas Seward 01 January 2006 (has links)
The primary purpose of the thesis is to discuss the use of Magnetic Resonance Imaging (MRI) in functional proton radiosurgery. The methods presented in this thesis were specifically designed to correct gradient nonlinearity distortion, the single greatest hurdle that limits the deployment of MRI-based functional proton radiosurgery systems. The new system central in the thesis fully utilized MRI to provide localization of anatomical targets with submillimeter accuracy. The thesis provides analysis and solutions to the problems related to gradient nonlinearity distortion. The characteristics of proton radiosurgery are introduced, in addition to a discussion of its advantages over other current methods of radiation oncology. A historical background for proton radiosurgery is also presented, along with a description of its implementation at Loma Linda University Medical Center (LLUMC), where a new system for functional proton radiosurgery has been proposed and is currently under development.
4

Optimization of a sequential alignment verification and positioning system (SAVPS) for proton radiosurgery

Neupane, Mahesh Raj 01 January 2005 (has links)
Functional proton-beam stereotactic radiosurgery requires sub-millimeter alignment accuracy. A patient tracking system called Sequential Alignment and Position Verification System (SAVPS) is under development at Loma Linda University Medical Center. An optical positioning system (OPS), manufactured by Vicon Peak, has been chosen to verify the correct alignment of the target with the proton beam axis. The main objective of this thesis is to optimize an existing version of SAVPS by conducting error analysis. An image processing algorithm was developed and applied to estimate the error introduced by the Patient Positioning System (PPS) in order to derive the true error of the SAVPS.
5

Validation of a Monte Carlo dose calculation algorithm for clinical electron beams in the presence of phantoms with complex heterogeneities

Unknown Date (has links)
The purpose of this thesis is to validate the Monte Carlo algorithm for electron radiotherapy in the Eclipse™ treatment planning system (TPS), and to compare the accuracy of the Electron Monte Carlo algorithm (eMC) to the Pencil Beam algorithm (PB) in Eclipse™. Dose distributions from GafChromic™ EBT3 film measurements were compared to dose distributions from eMC and PB treatment plans. Measurements were obtained with 6MeV, 9MeV, and 12MeV electron beams at various depths. A 1 cm thick solid water template with holes for bone-like and lung-like plugs was used to create assorted configurations and heterogeneities. Dose distributions from eMC plans agreed better with the film measurements based on gamma analysis. Gamma values for eMC were between 83%-99%, whereas gamma values for PB treatment plans were as low as 38.66%. Our results show that using the eMC algorithm will improve dose accuracy in regions with heterogeneities and should be considered over PB. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
6

Verification of patient position for proton therapy using portal X-Rays and digitally reconstructed radiographs

Van der Bijl, Leendert 12 1900 (has links)
Thesis (MScEng (Applied Mathematics))--University of Stellenbosch, 2006. / This thesis investigates the various components required for the development of a patient position verification system to replace the existing system used by the proton facilities of iThemba LABS1. The existing system is based on the visual comparison of a portal radiograph (PR) of the patient in the current treatment position and a digitally reconstructed radiograph (DRR) of the patient in the correct treatment position. This system is not only of limited accuracy, but labour intensive and time-consuming. Inaccuracies in patient position are detrimental to the effectiveness of proton therapy, and elongated treatment times add to patient trauma. A new system is needed that is accurate, fast, robust and automatic. Automatic verification is achieved by using image registration techniques to compare the PR and DRRs. The registration process finds a rigid body transformation which estimates the difference between the current position and the correct position by minimizing the measure which compares the two images. The image registration process therefore consists of four main components: the DRR, the PR, the measure for comparing the two images and the minimization method. The ray-tracing algorithm by Jacobs was implemented to generate the DRRs, with the option to use X-ray attenuation calibration curves and beam hardening correction curves to generate DRRs that approximate the PRs acquired with iThemba LABS’s digital portal radiographic system (DPRS) better. Investigations were performed mostly on simulated PRs generated from DRRs, but also on real PRs acquired with iThemba LABS’s DPRS. The use of the Correlation Coefficient (CC) and Mutual Information (MI) similarity measures to compare the two images was investigated. Similarity curves were constructed using simulated PRs to investigate how the various components of the registration process influence the performance. These included the use of the appropriate XACC and BHCC, the sizes of the DRRs and the PRs, the slice thickness of the CT data, the amount of noise contained by the PR and the focal spot size of the DPRS’s X-ray tube. It was found that the Mutual Information similarity measure used to compare 10242 pixel PRs with 2562 pixel DRRs interpolated to 10242 pixels performed the best. It was also found that the CT data with the smallest slice thickness available should be used. If only CT data with thick slices is available, the CT data should be interpolated to have thinner slices. Five minimization algorithms were implemented and investigated. It was found that the unit vector direction set minimization method can be used to register the simulated PRs robustly and very accurately in a respectable amount of time. Investigations with limited real PRs showed that the behaviour of the registration process is not significantly different than for simulated PRs.
7

Prompt gamma imaging with a slit camera for real time range control in particle therapy

Smeets, Julien 10 October 2012 (has links)
In a growing number of cutting edge centres around the world, radiotherapy treatments delivered by beams of protons and carbon ions offer the opportunity to target tumours with unprecedented conformality. But a sharper dose distribution increases the need for efficient quality control. Treatments are still affected by uncertainties on the penetration depth of the beam within the patient, requiring medical physicists to add safety margins. To reduce these margins and deliver safer treatments, different projects investigate real time range control by imaging prompt gammas emitted along the proton or carbon ion tracks in the patient.<p><p>This thesis reports on the feasibility, development and test of a new type of prompt gamma camera for proton therapy. This concept uses a knife-edge slit collimator to obtain a 1-dimensional projection of the beam path on a gamma camera. It was optimized, using the Monte Carlo code MCNPX version 2.5.0, to select high energy photons correlated with the beam range and detect them with both high counting statistics and sufficient spatial resolution for use in clinical routine. To validate the Monte Carlo model, spectrometry measurements of secondary particles emitted by a PMMA target during proton irradiation at 160 MeV were realised. An excellent agreement with the simulations was observed when using subtraction methods to isolate the gammas in direct incidence. A first prototype slit camera using the HiCam gamma detector was consequently prepared and tested successfully at 100 and 160 MeV beam energies. If we neglect electronic dead times and rejection of detected events, the current solution with its collimator at 15 cm from beam axis can achieve a 1-2 mm standard deviation on range estimation in a homogeneous PMMA target for numbers of protons that correspond to doses in water at Bragg peak as low as 15 cGy at 100 MeV and 25 cGy at 160 MeV assuming pencil beams with a Gaussian profile of 5 mm sigma at target entrance.<p><p>This thesis also investigates the applicability of the slit camera for carbon ion therapy. On the basis of Monte Carlo simulations with the code MCNPX version 2.7.E, this type of camera appears not to be able to identify the beam range with the required sensitivity. The feasibility of prompt gamma imaging itself seems questionable at high beam energies given the weak correlation of secondaries leaving the patient.<p><p>This work consequently concludes to the relevance of the slit camera approach for real time range monitoring in proton therapy, but not in carbon ion therapy. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
8

Sequential alignment and position verification system for functional proton radiosurgery

Malkoc, Veysi 01 January 2004 (has links)
The purpose of this project is to improve the existing version of the Sequential Alignment and Position Verification System (SAPVS) for functional proton radiosurgery and to evaluate its performance after improvement .
9

Variations in radiosensitivity of breast cancer and normal breast cell lines using a 200MeV clinical proton beam

Du Plessis, Peter Clark January 2018 (has links)
Thesis (MSc (Radiography))--Cape Peninsula University of Technology, 2018 / Background: Breast cancer is one of the most commonly diagnosed among woman in South Africa, and a more resilient effort should be focused on treatment improvements. Worldwide, proton therapy is increasingly used as a radiation treatment alternative to photon therapy for breast cancer, mostly to decrease the risk for radiation-induced cardiovascular toxicity. This in vitro study aims to determine a better understanding of the radiosensitivity of both tumour and normal breast cell lines to clinical proton irradiation. In addition, we propose to investigate whether the increase in linear energy transfer (LET) towards the distal part of the proton beam results in an increase in relative biological effectiveness (RBE) for both cell lines. Methods: Malignant (MCF-7) and non-malignant (MCF-10A) breast cells were irradiated at different water equivalent depths in a 200 MeV proton beam at NRF iThemba LABS using a custom-made Perspex phantom: the entrance plateau, 3 points on the Bragg peak, the D80% and the D40%. A cytokinesis-block Micronucleus (CBMN) assay was performed and Micronuclei (MNi) were manually counted in binucleated cells (BNCs) using fluorescent microscopy. Reference dosimetry was carried out with a Markus chamber and irradiations were performed with a clinical proton beam generated at NRF iThemba LABS that was degraded to a R50 (half-value depths) range of 120 mm, with a field size of 10 cm x 10 cm and a 50 mm SOBP. The phantom could be adjusted to accommodate different perspex plates depending on the depth required within the proton beam. Cells were then exposed to 0.5, 1.0, 2.0, 3.0 and 4.0 Gy doses for each cell line independently and for each dose point. Results and Discussion: For the CBMN results, a program was developed on Matlab platform to calculate the 95% confidence ellipse on the co-variance parameters α and β. These values were determined by fitting the linear quadratic dose response curve to the average number of radiation induced MNi per 1000 BN cells. The ellipse region around a coordinate (the average MN frequency) for both MCF-7 and MCF-10A cells at the plateau region was defined by the mean estimate of the α-value and the β-value that were plotted on the X-axis and Y-axis respectively. The ratio of the two parameters, α/β, is a measure of the impact of fractionation to determine the biological effective dose. In fractionated proton therapy, the MCF10A cells will repair less between two fractions compared to the MCF7 cells. This is not an indication of therapeutic gain from a fractioned treatment protocol. For this reason, the hypofractionated stereotactic treatment protocols that can be applied with protons could be to the befit of the breast cancer patient. The above argument is based only on the radiosensitivity of the two cell lines exposed in the plateau region. Further analysis of the 95% confidence ellipse of both cell lines also showed a clear increase of the alpha value toward the distal portion of the beam and indicates an increase in energy transfer in this region. The gradual increase in α and β parameters with depth for protons for both cells is of clinical importance, since it implicates a non-homogeneous dose within the targeted area and an unwanted high dose behind the targeted area. Distal energy modulation could be investigated especially with larger breast tumours. RBE was calculated as the ratio of the dose at the different positions to the dose at the entrance plateau position (reference) to obtain an equal level of biological effect. A statistically significant difference in radiosensitivity could be observed between malignant and non-malignant cells at all positions (p<0.05). The variation in RBE was between 0.99 to 1.99 and 0.92 to 1.6 for the MCF-7 and MCF10A cell respectively. Conclusions: There is a variation in RBE along the depth-dose profile of a clinical proton beam. In addition, there is difference in radiosensitivity between the cancerous cells and the normal breast cells. While this study highlights a variation in sensitivity between cells it could be used by the modelling community to further develop biologically motivated treatment planning for proton therapy.
10

Using MCNPX to calculate primary and secondary dose in proton therapy

Ryckman, Jeffrey M. 24 January 2011 (has links)
Proton therapy is a relatively new treatment modality for cancer, having recently been incorporated into hospitals in the last two decades. Although proton therapy has much higher start up and treatment costs than traditional methods of radiotherapy, it continues to expand in use today. One reason for this is that proton therapy has the advantage of a more precise localization of dose compared to traditional radiotherapy. Other proposed advantages of proton therapy in the treatment of cancer may lead to a faster expanse in its use if proven to be more effective than traditional radiotherapy. Therefore, much research must be done to investigate the possible negative and positive effects of using proton therapy as a treatment modality. In proton therapy, protons do account for the vast majority of dose. However, when protons travel through matter, secondary particles are created by the interactions of protons and matter en route to and within the patient. It is believed that secondary dose can lead to secondary cancer, especially in pediatric cases. Therefore, the focus of this work is determining both primary and secondary dose. In order to develop relevant simulations, the specifications of the treatment room and beam were based off of real-world facilities as closely as possible. Using available data from proton accelerators and clinical facilities, an accurate proton therapy nozzle was designed. Dose calculations were performed by MCNPX using a simple water phantom, and then beam characteristics were investigated to ensure the accuracy of the model. After validation of the beam nozzle, primary and secondary dose values were tabulated and discussed. By demonstrating the method of these calculations, the purpose of this work is to serve as a guide into the relatively recent field of Monte Carlo methods in proton therapy.

Page generated in 0.0661 seconds