• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling the respiratory chain and the oxidative phosphorylation / Modélisation de la Chaîne Respiratoire et de la Phosphorylation Oxydative

Heiske, Margit 11 December 2012 (has links)
Mitochondria are cell organelles which play an essential role in the cell energy supply providing the universal high energetic molecule ATP which is used in numerous energy consuming processes. The core of the ATP production, oxidative phosphorylation (OXPHOS) consists of four enzyme complexes (respiratory chain) which establish, driven by redox reactions, a proton gradient over the inner mitochondrial membrane. The ATP-synthase uses this electrochemical gradient to phosphorylate ADP to ATP. Dysfunctioning of an OXPHOS complex can have severe consequences for the energy metabolism and cause rare but incurable dysfunctions in particular tissues with a high energy demand such as brain, heart, kidney and skeleton muscle. Moreover mitochondria are linked to widespread diseases like diabetes, cancer, Alzheimer and Parkinson. Further, reactive oxygen species which are a by-product of the respiratory chain, are supposed to play a crucial role in aging. The aim of this work is to provide a realistic model of OXPHOS which shall help understanding and predicting the interactions within the OXPHOS and how a local defect (enzyme deficiency or modification) is expressed globally in mitochondrial oxygen consumption and ATP synthesis. Therefore we chose a bottom-up approach. In a first step different types of rate equations were analyzed regarding their ability to describe the steady state kinetics of the isolated respiratory chain complexes in the absence of the proton gradient. Here Michaelis-Menten like rate equations were revealed to be appropriate for describing their behavior over a wide range of substrate and product concentrations. For the validation of the equations and the parameter estimation we have performed kinetic measurements on bovine heart submitochondrial particles. The next step consisted in the incorporation of the proton gradient into the rate equations, distributing its influence among the kinetic parameters such that reasonable rates were obtained in the range of physiological electrochemical potential differences. In the third step, these new individual kinetic rate expressions for the OXPHOS complexes were integrated in a global model of oxidative phosphorylation. The new model could fit interrelated data of oxygen consumption, the transmembrane potential and the redox state of electron carriers. Furthermore, flux inhibitor titration curves can be well reproduced, which validates its global responses to local effects. This model may be of great help to understand the increasingly recognized role of mitochondria in many cell processes and diseases as illustrated by some simulations proposed in this work. / Les mitochondries sont l’usine à énergie de la cellule. Elles synthétisent l’ATP à partir d’une succession de réactions d’oxydo-réduction catalysées par quatre complexes respiratoires qui forment la chaîne respiratoire. Avec la machinerie de synthèse d’ATP l’ensemble constitue les oxydations phosphorylantes (OXPHOS). Le but de ce travail est de bâtir un modèle des OXPHOS basé sur des équations de vitesse simples mais thermodynamiquement correctes, représentant l’activité des complexes de la chaîne respiratoire (équations de type Michaelis- Menten). Les paramètres cinétiques de ces équations sont identifiés en utilisant les cinétiques expérimentales de ces complexes respiratoires réalisées en absence de gradient de proton. La phase la plus délicate de ce travail a résidé dans l’introduction du gradient de protons dans ces équations. Nous avons trouvé que la meilleure manière était de distribuer l’effet du gradient de proton sous forme d’une loi exponentielle sur l’ensemble des paramètres, Vmax et Km pour les substrats et les produits. De cette manière, j’ai montré qu’il était possible de représenter les variations d’oxygène, de ΔΨ et de ΔpH trouvés dans la littérature. De plus, contrairement aux autres modèles, il fut possible de simuler les courbes de seuil observées expérimentalement lors de la titration du flux de respiration par l’inhibiteur d’un complexe respiratoire donné.Ce modèle pourra présenter un très grand intérêt pour comprendre le rôle de mieux en mieux reconnu des mitochondries dans de nombreux processus cellulaires, tels que la production d’espèces réactives de l’oxygène, le vieillissement, le diabète, le cancer, les pathologies mitochondriales etc. comme l’illustrent un certain nombre de prédictions présentées dans ce travail.
2

Modeling the respiratory chain and the oxidative phosphorylation

Heiske, Margit 16 April 2013 (has links)
Die oxidative Phosphorylierung (OXPHOS) spielt eine zentrale Rolle im Energiestoffwechsel der Zelle. Sie besteht aus der Atmungskette, deren vier Enzymkomplexe einen Protonengradienten über die innere mitochondriale Membran aufbauen, und der ATP-Synthase, die diesen Gradienten zur Phosphorylierung von ADP zu ATP, der zelluläre Energieeinheit, nutzt. In der vorliegenden Arbeit wurde ein thermodynamisch konformes OXPHOS Modell erstellt, welches auf Differentialgleichungen basiert. Dazu wurden Gleichungen entwickelt, welche die Kinetiken jedes OXPHOS-Komplexes über weite Bereiche von Substrat- und Produktkonzentrationen sowie unterschiedlichster Werte des elektrochemischen Gradientens wiedergeben. Zunächst wurden für jeden Komplex der Atmungskette kinetische Messungen in Abwesenheit des Protonengradientens durchgeführt. Für deren Beschreibung erwiesen sich Gleichungen vom Typ Michaelis-Menten als adäquat; hierbei wurden verschiedene Gleichungstypen verglichen. Anschließend wurde der Einfluss des Protonengradientens auf die kinetischen Parameter so modelliert, dass physiologisch sinnvolle Raten in dessen Abhängigkeit erzielt werden konnten. Diese neuen Ratengleichungen wurden schließlich in ein OXPHOS Modell integriert, mit dem sich experimentelle Daten von Sauerstoffverbrauch, elektrischem Potential und pH-Werten sehr gut beschreiben ließen. Weiter konnten Inhibitor-Titrationskurven reproduziert werden, welche den Sauerstoffverbrauch in Abhängigkeit der relativen Hemmung eines OXPHOS-Komplexes darstellen. Dies zeigt, dass lokale Effekte auf globaler Ebene korrekt wiedergeben werden können. Das hier erarbeitete Modell ist eine solide Basis, um die Rolle der OXPHOS und generell von Mitochondrien eingehend zu untersuchen. Diese werden mit zahlreichen zellulären Vorgängen in Verbindung gebracht: unter anderem mit Diabetes, Krebs und Mitochodriopathien, sowie der Bildung von Sauerstoffradikalen, die im Zusammenhang mit Alterungsprozessen stehen. / Oxidative phosphorylation (OXPHOS) plays a central role in the cellular energy metabolism. It comprises the respiratory chain, consisting of four enzyme complexes that establish a proton gradient over the inner mitochondrial membrane, and the ATP-synthase that uses this electrochemical gradient to phosphorylate ADP to ATP, the cellular energy unit. In this work a thermodynamically consistent OXPHOS model was built based on a set of differential equations. Therefore rate equations were developed that describe the kinetics of each OXPHOS complex over a wide concentration range of substrates and products as well for various values of the electrochemical gradient. In a first step, kinetic measurements on bovine heart submitochondrial particles have been performed in the absence of the proton gradient. An appropriate data description was achieved with Michaelis-Menten like equations; here several types of equations have been compared. The next step consisted in incorporating the proton gradient into the rate equations. This was realized by distributing its influence among the kinetic parameters such that reasonable catalytic rates were obtained under physiological conditions. Finally, these new individual kinetic rate expressions for the OXPHOS complexes were integrated in a global model of oxidative phosphorylation. This new model could fit interrelated data of oxygen consumption, the transmembrane potential and the redox state of electron carriers. Furthermore, it could well reproduce flux inhibitor titration curves, which validates its global responses to local perturbations. This model is a solid basis for analyzing the role of OXPHOS and mitochondria in detail. They have been linked to various cellular processes like diabetes, cancer, mitochondrial disorders, but also to the production of reactive oxygen species, which are supposed to be involved in aging.

Page generated in 0.0817 seconds