• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PALEOSEISMOLOGY OF A PLIOCENE EARTHQUAKE IN EASTERN TAIWAN

Korren, Caitlyn 01 May 2015 (has links)
High seismicity coupled with high population density creates a recipe for high seismic risk in Taiwan. Taiwan is located at the convergences of the Eurasian and Philippine Sea plates. These convergences result in the development of an accretionary wedge. A basal decollemont bounds the NE-SW trending thrust packages. The most Eastern thrust package, the Central Range, experiences high erosion rates and exhumation rates which may induce high seismicity. Paleoseismic indicators improve the ancient seismic history and may aid in the constraint of geologic processes of an accretionary wedge. Pseudotachylytes, known as earthquake fossils, form by frictional melting during seismic slip. Cataclasites form by comminution during sliding. Frictional melts serve as a window to the fault plane. Pseudotachylytes may allow for the assessment of focal parameters through the utilization of fault plane geometry and slip surface properties. This study provides the first microstructural evidence for fault pseudotachylytes at the Hoping River locality in Eastern Taiwan. The 3.3 Ma Hoping River frictional melt evidences an ancient Mw 6.4 ±0.40 earthquake. This pseudotachylyte demonstrates an oblique fault with a reverse component which corresponds to the orientation of the thrust packages in the accretionary wedge. Sense of slip of both pseudotachylytes and cataclasites suggest a uniform stress field. Narrow fault cores suggest high strain localization. Coeval pseudotachylyte and quartz-calcite veins suggest shear heating as a mechanism, if a fluid reservoir along the basal decollemont in Taiwan exists.
2

Seismogenic deformation structures in the brittle-ductile transition regime: a case study of ultramafic pseudotachylytes and related deformed rocks in the Balmuccia peridotite body, Italy / 脆性―延性遷移領域における地震性の変形構造:イタリア、バルムチャかんらん岩体に産する超マフィック組成シュードタキライトと随伴する変形岩の研究

Ueda, Tadamasa 25 January 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19394号 / 理博第4125号 / 新制||理||1593(附属図書館) / 32419 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 平島 崇男, 教授 土`山 明, 准教授 河上 哲生 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

THERMOBAROMETRY OF METAMORPHOSED PSEUDOTACHYLYTE AND DETERMINATION OF SEISMIC RUPTURE DEPTH DURING DEVONIAN CALEDONIAN EXTENSION, NORTH NORWAY

Leib, Susan E. 01 January 2013 (has links)
Crustal faulting has long been known as the source of shallow seismicity, and the seismogenic zone is the depth (3-15 km) within the crust that is capable of co-seismic slip, largely under brittle conditions. However, some continental seismicity occurs at depths >> 15 km. I performed thermobarometry of mylonitic pseudotachylyte to determine the P-T of a seismogenic extensional fault in the Caledonian Norwegian margin. Two shear zones (Eidsfjord and Fiskfjord) located in northern Norway exhibit brittle extension propagating into the ductile regime of the lower crust as evidenced by the presence of pseudotachylyte. Averages from Eidsfjord (653 ± 38°C and 570 ± 115 MPa) and Fiskfjord (680 ± 70°C and 1121 ± 219 MPa) correspond to depths of co-seismic slip of 21 ±4 km and 41 ± 9 km, respectively. These depths are 5-25 km below the depth of the standard seismogenic zone in mature fault systems, and require another mechanism (e.g. dynamic downward rupture, unusually high shear stresses) to account for seismogenic rupture at such depths. Assuming Eidsfjord and Fiskfjord were uplifted at the same time, and considering they are currently at the same crustal level, Fiskfjord was uplifted a greater amount and at a faster rate as it was initially located at a greater crustal depth.
4

Magnetic Paleointensities in Fault Pseudotachylytes and Implications for Earthquake Lightnings

Leibovitz, Natalie Ruth 01 August 2016 (has links)
Fault pseudotachylytes commonly form by frictional melting due to seismic slip. These fine-grained clastic rocks result from melt quenching and may show a high concentration of fine ferromagnetic grains. These grains are potentially excellent recorders of the rock natural remanent magnetization (NRM). The magnetization processes of fault pseudotachylytes are complex and may include the following: i) near coseismic thermal remanent magnetization (TRM) acquired upon cooling of the melt; ii) coseismic lightning induced remanent magnetization (LIRM) caused by earthquake lightnings (EQL); iii) post seismic chemical remanent magnetization (CRM) related to both devitrification and alteration. Deciphering these magnetization components is crucial to the interpretation of paleointensities to see if coseismic phenomena such as EQL’s were recorded within these rocks. Hence the paleomagnetic record of fault pseudotachylytes provides an independent set of new constraints on coseismic events. Fault pseudotachylytes from the Santa Rosa Mountains, California host a magnetic assemblage dominated by stoichiometric magnetite, formed from the breakdown of ferromagnesian silicates and melt oxidation at high temperature. Magnetite grain size in these pseudotachylytes compares to that of magnetite formed in friction experiments. Paleomagnetic data on these 59 Ma-old fault rocks reveal not only anomalous magnetization directions, inconsistent with the coseismic geomagnetic field, but also anomalously high magnetization intensities. Here we discuss results of rock magnetism and paleointensity experiments designed to quantify the intensity of coseismic magnetizing fields. The REM’ paleointensity method, previously tested on meteorites, is particularly well suited to investigate NRMs resulting from non-conventional and multiple magnetization processes. Overall findings indicate an isothermal remanent magnetization (IRM) in some, but not all, specimens taken from four different Santa Rosa pseudotachylyte samples. The cause of this IRM may be attributed to an LIRM produced by ground lightning (less likely), LIRM produced by an EQL (more likely), or a VRM imparted during laboratory preparation (not likely). The anomalously high NRM recorded in a few specimens points to LIRM as the most likely explanation for the dominant origin of magnetization.
5

Reproduction expérimentale d'analogues de séismes mantelliques par déshydratation de l'antigorite & Comparaison à des pseudotachylites naturelles / Experimental reproduction of mantle earthquakes analogues by antigorite dehydration & Comparison with natural pseudotachylytes

Ferrand, Thomas 02 February 2017 (has links)
Les séismes intermédiaires (30-300 km) ont été largement documentés dans les plaques océaniques en subduction mais leur mécanisme physique reste énigmatique. Des séismes se produisent dans les plans de Wadati-Bénioff supérieur et inférieur. Ce dernier se situe dans le manteau lithosphérique plongeant, 15 à 40 km sous l’interface de subduction, et est considéré dû à la déshydratation de l’antigorite, serpentine de haute température.Pour tester cette hypothèse et comprendre quel mécanisme est en jeu dans le plan inférieur, des expérimentations (Griggs et D-DIA) et une étude de terrain (Balmuccia, Italie) ont été effectuées.Des péridotites artificielles ont été déshydratées pendant leur déformation dans des conditions typiques du manteau supérieur (1 à 3.5 GPa). Des émissions acoustiques sont enregistrées dans des échantillons comportant 5 %vol. d’antigorite. Les microfailles associées sont scellées par des pseudotachylites contenant des fluides, montrant que la déstabilisation de l’antigorite a déclenché une rupture dynamique et la fusion de l’olivine sur la surface de faille. Ces résultats mènent à l’établissement d’un model dans lequel un transfert de contrainte induit par déshydratation, et non par surpression de fluides, est le déclencheur de la fragilisation des roches du manteau.Parallèlement, une pseudotachylite de la péridotite de Balmuccia révèle l’enregistrement de l’histoire du glissement d’un séisme fossile de magnitude Mw > 6. La lubrification co-sismique est complète et transitoire, car le magma peut rapidement s’écouler dans les fentes en tension lors du passage du front de rupture, peut-être plus vite qu’il n’est produit. L’aspiration du magma mènerait à un refroidissement permettant le rétablissement de la résistance et l’arrêt du glissement.Cette pseudotachylite naturelle, un million de fois plus grande que son analogue expérimental, s’est formée dans les mêmes conditions de pression et de température. La grande similitude entre ces failles sur le terrain et au laboratoire indique un mécanisme similaire, et donc que les expériences montrent un mécanisme de rupture représentatif de ce qui se passe dans la nature. D’autre part, de l’H2O, trouvée fossilisée dans la pseudotachylite, était présente pendant la rupture sismique.Ce travail réconcilie des décennies d’études semblant contradictoires sur le lien entre séismes mantelliques et déshydratation de l’antigorite. À une certain échelle, une fraction d’antigorite de seulement 5 %vol. suffit à déclencher une sismicité, qui pourrait finalement être vue comme un indicateur du degré d’hydratation dans le manteau lithosphérique. / Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs but their physical mechanisms remain enigmatic. Earthquakes occur both in the upper and lower Wadati-Benioff planes. The latter is located in the mantle of the subducted oceanic lithosphere, 15-40 km below the plate interface, and is thought to be due to the dehydration of antigorite, the high-temperature serpentine.To test this hypothesis and understand which mechanism is at play in the lower plane, both experiments (Griggs and D-DIA) and field work (Balmuccia, Italy) have been performed.Artificial peridotites were dehydrated during deformation at upper mantle conditions. Between 1 and 3.5 GPa, acoustic emissions are recorded in samples with only 5 vol.% antigorite. Associated microfaults are sealed by fluid-bearing pseudotachylytes, showing that antigorite destabilization triggered dynamic shear failure and frictional melting of olivine. These results lead to a model in which dehydration-induced stress transfer, rather than fluid overpressure, is the trigger of mantle rocks embrittlement.Simultaneously, a pseudotachylyte from the Balmuccia peridotite reveals the recorded sliding history of an ancient Mw > 6 earthquake. The co-seismic fault lubrication is complete and transient, as the melt could rapidly flow into tensile fractures generated by the rupture front pass through, possibly faster than it is produced. Melt suction within the fractures led to rapid cooling and may have promoted strength recovery and sliding arrest.This natural pseudotachylyte, one million times larger than the experimental ones, has formed at the same pressure and temperature. The high similarity between those experimental and natural faults indicates a similar mechanism at both scales, and thus that the experiments show a rupture mechanism representative of what happens in nature. Furthermore, H2O, found fossilized in the pseudotachylyte, was somehow present during the seismic rupture.This work reconciles decades of apparently contradictory studies on the possible link between mantle earthquakes and serpentine dehydration. At a certain scale, an antigorite fraction as low as 5 vol.% is sufficient to trigger seismicity, which could therefore ultimately be seen as an indicator for the degree of hydration in the lithospheric mantle.
6

Nature and Origin of the East Traverse Mountains Mega-Landslide, Northern Utah (USA)

Chadburn, Rodney Ryan 11 December 2020 (has links)
The East Traverse Mountains are an E-W trending mountain range dividing Utah and Salt Lake valleys in northern Utah. Geologically perplexing, the nature of the East Traverse Mountains has been under investigation for 140 years. Previously, the mountain range was proposed to be a dismembered but still coherent down-faulted block that experienced 4 km of post-thrusting extension within the Charleston-Nebo thrust sheet. However, new insight on the origin of the East Traverse Mountains indicate that it is a mega landslide, roughly ~100 km3 in size, which catastrophically slid from the upper reaches of the Little-Cottonwood stock to its present-day location. The primary evidence for this landslide includes two unusual dike swarms whose roots are in the Wasatch Range and whose upper reaches are now in the East Traverse Mountains, 16 km to the SW. A swarm of pebble dikes, indicative of porphyry mineralization is found at the center of the East Traverse Mountains and contain pebbles of Little-Cottonwood stock as well as two other intrusions found at the center of a mineralized zone. These granitic clasts have phyllic alteration, contain molybdenite grains and are sourced from a subeconomic molybdenum-copper porphyry deposit located 16 km to the NE. The other dike swarm occurs on the SE corner of the range near Alpine, Utah, which contains various andesitic and phaneritic dikes of intermediate-felsic compositions (56-69 wt.% SiO2) with localized marble on their southern margin. These dikes range in U-Pb ages from 36-29 Ma. Moreover, other evidence includes brecciation of the entire mountain range as well as along the slide path of this landslide. Breccia, as well as pseudotachylyte and cataclasite have been discovered that formed in the rapid transportation of the 1-2 km thick detached block. Devitrified pseudotachylyte veins range in thickness from 1 cm to 1 m and are present in the roof zone of the pluton. Sixteen kilometers of sliding caused 70-80% of the Oquirrh Group rocks of the East Traverse Mountains to be fractured to less than 1-inch diameter clasts in breccias and broken formations, as documented by 16 years of mining. U-bearing opal replaced significant areas of brecciated volcanic rocks when hot water seeped into highly-fractured, argillically altered rock. U-Pb ages of 6.1 ± 0.9 Ma from these opalite areas could provide a minimum age for the emplacement of the mountain block. Underlying the East Traverse Mountains slide block is a layer of fallout tuff deposited in the Jordan River Narrows member with 40Ar/39Ar ages of 6.62 ± 0.07 Ma which provides a maximum age of emplacement. Therefore, we propose that the East Traverse Mountains mega-landslide occurred between 6.1 ± 0.9 Ma and 6.62 ± 0.07 Ma. Our interpretation for the East Traverse Mountains mega-landslide model builds upon previous research and data, with the addition of these recent findings. This new interpretation is crucial for understanding the potential for large normal fault systems to create significant landslide hazards.
7

Nature and Origin of the East Traverse Mountains Mega-Landslide, Northern Utah (USA)

Chadburn, Rodney Ryan 11 December 2020 (has links)
The East Traverse Mountains are an E-W trending mountain range dividing Utah and Salt Lake valleys in northern Utah. Geologically perplexing, the nature of the East Traverse Mountains has been under investigation for 140 years. Previously, the mountain range was proposed to be a dismembered but still coherent down-faulted block that experienced 4 km of post-thrusting extension within the Charleston-Nebo thrust sheet. However, new insight on the origin of the East Traverse Mountains indicate that it is a mega landslide, roughly ~100 km3 in size, which catastrophically slid from the upper reaches of the Little-Cottonwood stock to its present-day location. The primary evidence for this landslide includes two unusual dike swarms whose roots are in the Wasatch Range and whose upper reaches are now in the East Traverse Mountains, 16 km to the SW. A swarm of pebble dikes, indicative of porphyry mineralization is found at the center of the East Traverse Mountains and contain pebbles of Little-Cottonwood stock as well as two other intrusions found at the center of a mineralized zone. These granitic clasts have phyllic alteration, contain molybdenite grains and are sourced from a subeconomic molybdenum-copper porphyry deposit located 16 km to the NE. The other dike swarm occurs on the SE corner of the range near Alpine, Utah, which contains various andesitic and phaneritic dikes of intermediate-felsic compositions (56-69 wt.% SiO2) with localized marble on their southern margin. These dikes range in U-Pb ages from 36-29 Ma. Moreover, other evidence includes brecciation of the entire mountain range as well as along the slide path of this landslide. Breccia, as well as pseudotachylyte and cataclasite have been discovered that formed in the rapid transportation of the 1-2 km thick detached block. Devitrified pseudotachylyte veins range in thickness from 1 cm to 1 m and are present in the roof zone of the pluton. Sixteen kilometers of sliding caused 70-80% of the Oquirrh Group rocks of the East Traverse Mountains to be fractured to less than 1-inch diameter clasts in breccias and broken formations, as documented by 16 years of mining. U-bearing opal replaced significant areas of brecciated volcanic rocks when hot water seeped into highly-fractured, argillically altered rock. U-Pb ages of 6.1 ± 0.9 Ma from these opalite areas could provide a minimum age for the emplacement of the mountain block. Underlying the East Traverse Mountains slide block is a layer of fallout tuff deposited in the Jordan River Narrows member with 40Ar/39Ar ages of 6.62 ± 0.07 Ma which provides a maximum age of emplacement. Therefore, we propose that the East Traverse Mountains mega-landslide occurred between 6.1 ± 0.9 Ma and 6.62 ± 0.07 Ma. Our interpretation for the East Traverse Mountains mega-landslide model builds upon previous research and data, with the addition of these recent findings. This new interpretation is crucial for understanding the potential for large normal fault systems to create significant landslide hazards.

Page generated in 0.3553 seconds