• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 23
  • 14
  • 11
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 89
  • 83
  • 78
  • 25
  • 24
  • 22
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Characterising continuous optimisation problems for particle swarm optimisation performance prediction

Malan, Katherine Mary January 2014 (has links)
Real-world optimisation problems are often very complex. Population-based metaheuristics, such as evolutionary algorithms and particle swarm optimisation (PSO) algorithms, have been successful in solving many of these problems, but it is well known that they sometimes fail. Over the last few decades the focus of research in the field has been largely on the algorithmic side with relatively little attention being paid to the study of the problems. Questions such as ‘Which algorithm will most accurately solve my problem?’ or ‘Which algorithm will most quickly produce a reasonable answer to my problem?’ remain unanswered. This thesis contributes to the understanding of optimisation problems and what makes them hard for algorithms, in particular PSO algorithms. Fitness landscape analysis techniques are developed to characterise continuous optimisation problems and it is shown that this characterisation can be used to predict PSO failure. An essential feature of this approach is that multiple problem characteristics are analysed together, moving away from the idea of a single measure of problem hardness. The resulting prediction models not only lead to a better understanding of the algorithms themselves, but also takes the field a step closer towards the goal of informed decision-making where the most appropriate algorithm is chosen to solve any new complex problem. / Thesis (PhD)--University of Pretoria, 2014. / Computer Science / unrestricted
82

Multiple sequence alignment using particle swarm optimization

Zablocki, Fabien Bernard Roman 16 January 2009 (has links)
The recent advent of bioinformatics has given rise to the central and recurrent problem of optimally aligning biological sequences. Many techniques have been proposed in an attempt to solve this complex problem with varying degrees of success. This thesis investigates the application of a computational intelligence technique known as particle swarm optimization (PSO) to the multiple sequence alignment (MSA) problem. Firstly, the performance of the standard PSO (S-PSO) and its characteristics are fully analyzed. Secondly, a scalability study is conducted that aims at expanding the S-PSO’s application to complex MSAs, as well as studying the behaviour of three other kinds of PSOs on the same problems. Experimental results show that the PSO is efficient in solving the MSA problem and compares positively with well-known CLUSTAL X and T-COFFEE. / Dissertation (MSc)--University of Pretoria, 2009. / Computer Science / Unrestricted
83

Particle swarm optimization and differential evolution for multi-objective multiple machine scheduling

Grobler, Jacomine 24 June 2009 (has links)
Production scheduling is one of the most important issues in the planning and operation of manufacturing systems. Customers increasingly expect to receive the right product at the right price at the right time. Various problems experienced in manufacturing, for example low machine utilization and excessive work-in-process, can be attributed directly to inadequate scheduling. In this dissertation a production scheduling algorithm is developed for Optimatix, a South African-based company specializing in supply chain optimization. To address the complex requirements of the customer, the problem was modeled as a flexible job shop scheduling problem with sequence-dependent set-up times, auxiliary resources and production down time. The algorithm development process focused on investigating the application of both particle swarm optimization (PSO) and differential evolution (DE) to production scheduling environments characterized by multiple machines and multiple objectives. Alternative problem representations, algorithm variations and multi-objective optimization strategies were evaluated to obtain an algorithm which performs well against both existing rule-based algorithms and an existing complex flexible job shop scheduling solution strategy. Finally, the generality of the priority-based algorithm was evaluated by applying it to the scheduling of production and maintenance activities at Centurion Ice Cream and Sweets. The production environment was modeled as a multi-objective uniform parallel machine shop problem with sequence-dependent set-up times and unavailability intervals. A self-adaptive modified vector evaluated DE algorithm was developed and compared to classical PSO and DE vector evaluated algorithms. Promising results were obtained with respect to the suitability of the algorithms for solving a range of multi-objective multiple machine scheduling problems. Copyright / Dissertation (MEng)--University of Pretoria, 2009. / Industrial and Systems Engineering / unrestricted
84

A Computational Intelligence Approach to Clustering of Temporal Data

Georgieva, Kristina Slavomirova January 2015 (has links)
Temporal data is common in real-world datasets. Analysis of such data, for example by means of clustering algorithms, can be difficult due to its dynamic behaviour. There are various types of changes that may occur to clusters in a dataset. Firstly, data patterns can migrate between clusters, shrinking or expanding the clusters. Additionally, entire clusters may move around the search space. Lastly, clusters can split and merge. Data clustering, which is the process of grouping similar objects, is one approach to determine relationships among data patterns, but data clustering approaches can face limitations when applied to temporal data, such as difficulty tracking the moving clusters. This research aims to analyse the ability of particle swarm optimisation (PSO) and differential evolution (DE) algorithms to cluster temporal data. These algorithms experience two weaknesses when applied to temporal data. The first weakness is the loss of diversity, which refers to the fact that the population of the algorithm converges, becoming less diverse and, therefore, limiting the algorithm’s exploration capabilities. The second weakness, outdated memory, is only experienced by the PSO and refers to the previous personal best solutions found by the particles becoming obsolete as the environment changes. A data clustering algorithm that addresses these two weaknesses is necessary to cluster temporal data. This research describes various adaptations of PSO and DE algorithms for the purpose of clustering temporal data. The algorithms proposed aim to address the loss of diversity and outdated memory problems experienced by PSO and DE algorithms. These problems are addressed by combining approaches previously used for the purpose of dealing with temporal or dynamic data, such as repulsion and anti-convergence, with PSO and DE approaches used to cluster data. Six PSO algorithms are introduced in this research, namely the data clustering particle swarm optimisation (DCPSO), reinitialising data clustering particle swarm optimisation (RDCPSO), cooperative data clustering particle swarm optimisation (CDCPSO), multi-swarm data clustering particle swarm optimisation (MDCPSO), cooperative multi-swarm data clustering particle swarm optimisation (CMDCPSO), and elitist cooperative multi-swarm data clustering particle swarm optimisation (eCMDCPSO). Additionally, four DE algorithms are introduced, namely the data clustering differential evolution (DCDE), re-initialising data clustering differential evolution (RDCDE), dynamic data clustering differential evolution (DCDynDE), and cooperative dynamic data clustering differential evolution (CDCDynDE). The PSO and DE algorithms introduced require prior knowledge of the total number of clusters in the dataset. The total number of clusters in a real-world dataset, however, is not always known. For this reason, the best performing PSO and best performing DE are compared. The CDCDynDE is selected as the winning algorithm, which is then adapted to determine the optimal number of clusters dynamically. The resulting algorithm is the k-independent cooperative data clustering differential evolution (KCDCDynDE) algorithm, which was compared against the local network neighbourhood artificial immune system (LNNAIS) algorithm, which is an artificial immune system (AIS) designed to cluster temporal data and determine the total number of clusters dynamically. It was determined that the KCDCDynDE performed the clustering task well for problems with frequently changing data, high-dimensions, and pattern and cluster data migration types. / Dissertation (MSc)--University of Pretoria, 2015. / Computer Science / Unrestricted
85

Algoritmy monitorování a diagnostiky elektrických pohonů založené na modelu / Algorithms of Model based Electrical Drives Monitoring and Diagnostics

Kozel, Martin January 2014 (has links)
The aim of this thesis is to investigate PMSM models with internal faults. Two fault models are introduced. One of them is suitable for simulation of stator winding inter-turn short fault in case of one pole-pair motor and other one for simulation of inter-turn fault in case of multiple pole-pair motor. There are described some methods for model based fault detection of internal faults and sensor faults.
86

Optimalizace investičního portfolia pomocí metaheuristiky / Portfolio Optimization Using Metaheuristics

Haviar, Martin January 2015 (has links)
This thesis deals with design and implementation of an investment model, which applies methods of Post-modern portfolio theory. Particle swarm optimization (PSO) metaheuristic was used for portfolio optimization and the parameters were analyzed with several experiments. Johnsons SU distribution was used for estimation of future returns as it proved to be the best of analyzed distributions. The result is software application written in Python, which is tested for stability and performance of model in extreme situations.
87

Akcelerace částicových rojů PSO pomocí GPU / Acceleration of Particle Swarm Optimization Using GPUs

Krézek, Vladimír January 2012 (has links)
This work deals with the PSO technique (Particle Swarm Optimization), which is capable to solve complex problems. This technique can be used for solving complex combinatorial problems (the traveling salesman problem, the tasks of knapsack), design of integrated circuits and antennas, in fields such as biomedicine, robotics, artificial intelligence or finance. Although the PSO algorithm is very efficient, the time required to seek out appropriate solutions for real problems often makes the task intractable. The goal of this work is to accelerate the execution time of this algorithm by the usage of Graphics processors (GPU), which offers higher computing potential while preserving the favorable price and size. The boolean satisfiability problem (SAT) was chosen to verify and benchmark the implementation. As the SAT problem belongs to the class of the NP-complete problems, any reduction of the solution time may broaden the class of tractable problems and bring us new interesting knowledge.
88

Akcelerace částicových rojů PSO pomocí GPU / Particle Swarm Optimization on GPUs

Záň, Drahoslav January 2013 (has links)
This thesis deals with a population based stochastic optimization technique PSO (Particle Swarm Optimization) and its acceleration. This simple, but very effective technique is designed for solving difficult multidimensional problems in a wide range of applications. The aim of this work is to develop a parallel implementation of this algorithm with an emphasis on acceleration of finding a solution. For this purpose, a graphics card (GPU) providing massive performance was chosen. To evaluate the benefits of the proposed implementation, a CPU and GPU implementation were created for solving a problem derived from the known NP-hard Knapsack problem. The GPU application shows 5 times average and almost 10 times the maximum speedup of computation compared to an optimized CPU application, which it is based on.
89

An Analysis of Overfitting in Particle Swarm Optimised Neural Networks

van Wyk, Andrich Benjamin January 2014 (has links)
The phenomenon of overfitting, where a feed-forward neural network (FFNN) over trains on training data at the cost of generalisation accuracy is known to be speci c to the training algorithm used. This study investigates over tting within the context of particle swarm optimised (PSO) FFNNs. Two of the most widely used PSO algorithms are compared in terms of FFNN accuracy and a description of the over tting behaviour is established. Each of the PSO components are in turn investigated to determine their e ect on FFNN over tting. A study of the maximum velocity (Vmax) parameter is performed and it is found that smaller Vmax values are optimal for FFNN training. The analysis is extended to the inertia and acceleration coe cient parameters, where it is shown that speci c interactions among the parameters have a dominant e ect on the resultant FFNN accuracy and may be used to reduce over tting. Further, the signi cant e ect of the swarm size on network accuracy is also shown, with a critical range being identi ed for the swarm size for e ective training. The study is concluded with an investigation into the e ect of the di erent activation functions. Given strong empirical evidence, an hypothesis is made that stating the gradient of the activation function signi cantly a ects the convergence of the PSO. Lastly, the PSO is shown to be a very effective algorithm for the training of self-adaptive FFNNs, capable of learning from unscaled data. / Dissertation (MSc)--University of Pretoria, 2014. / tm2015 / Computer Science / MSc / Unrestricted
90

Particle swarm optimization : empirical and theoretical stability analysis

Cleghorn, Christopher Wesley January 2017 (has links)
Particle swarm optimization (PSO) is a well-known stochastic population-based search algorithm, originally developed by Kennedy and Eberhart in 1995. Given PSO's success at solving numerous real world problems, a large number of PSO variants have been proposed. However, unlike the original PSO, most variants currently have little to no existing theoretical results. This lack of a theoretical underpinning makes it difficult, if not impossible, for practitioners to make informed decisions about the algorithmic setup. This thesis focuses on the criteria needed for particle stability, or as it is often refereed to as, particle convergence. While new PSO variants are proposed at a rapid rate, the theoretical analysis often takes substantially longer to emerge, if at all. In some situation the theoretical analysis is not performed as the mathematical models needed to actually represent the PSO variants become too complex or contain intractable subproblems. It is for this reason that a rapid means of determining approximate stability criteria that does not require complex mathematical modeling is needed. This thesis presents an empirical approach for determining the stability criteria for PSO variants. This approach is designed to provide a real world depiction of particle stability by imposing absolutely no simplifying assumption on the underlying PSO variant being investigated. This approach is utilized to identify a number of previously unknown stability criteria. This thesis also contains novel theoretical derivations of the stability criteria for both the fully informed PSO and the unified PSO. The theoretical models are then empirically validated utilizing the aforementioned empirical approach in an assumption free context. The thesis closes with a substantial theoretical extension of current PSO stability research. It is common practice within the existing theoretical PSO research to assume that, in the simplest case, the personal and neighborhood best positions are stagnant. However, in this thesis, stability criteria are derived under a mathematical model where by the personal best and neighborhood best positions are treated as convergent sequences of random variables. It is also proved that, in order to derive stability criteria, no weaker assumption on the behavior of the personal and neighborhood best positions can be made. The theoretical extension presented caters for a large range of PSO variants. / Thesis (PhD)--University of Pretoria, 2017. / Computer Science / PhD / Unrestricted

Page generated in 0.0977 seconds