Spelling suggestions: "subject:"full tut"" "subject:"full uut""
61 |
Finite element modelling of screw fixation in augmented and non-augmented cancellous boneBennani Kamane, Philippe January 2012 (has links)
This research project presents a study of the fixation of screws in augmented and non-augmented cancellous bone at a microscopic scale. It is estimated that somewhere close to one million screws are failing each year. Therefore, the aim is to identify the key parameters affecting screw pull-out in order to improve screw fixation in cancellous bone, and hence screw design. The background for this study comes from work by Stryker, comparing screw pull-out from augmented and non-augmented cancellous bone, where a few cases of screw pull-out gave better results without bone augmentation. This is contrary to most evidence and the hypothesis to explain these results is that the screw pull-out from cancellous bone could be strongly affected by the cancellous bone micro architecture. The effect of the influence of the screw’s initial position was first verified with 2D finite element (FE) models of screw pull-out from simplified cancellous bone models. The results showed a force reaction variation up to 28% with small change in position. The hypothesis was then tested with 3D FE models of screw pull-out from more complex cancellous bone models with different volume fractions. Three volume fractions were tested and again the effects were confirmed, but only in models with the lower volume fraction. A variation up to 30% of the force reaction was observed. The 3D simplified cancellous bone models with 5.3% volume fraction were also used to study the influence of augmentation using calcium phosphate cement. A significant improvement of the screw holding power (almost 2 times) as well as an important diminution of the variability of the pull-out force due to the screw initial position was found. Other augmentation geometries were used to model cement. They all showed an increase of the screw pull-out force reaction with an increase of the cement volume. Validation of FE results was achieved by comparing screw pull-out from a cadaver cancellous bone and the FE model constructed from the same bone sample. New studies were then carried out from the cadaver cancellous bone model. The first study examined the screw initial position influence with cancellous and cortical screws and again showed that there is a strong correlation between screw pull-out stiffness and bone volume fraction. The cortical screw showed improved performance over the cancellous screw. Augmentation cases were explored using three bone samples with a range of volume fractions obtained from different sites within the cadaver bone sample. The cancellous screw was tested with 3 types of augmentation and the cortical screw was tested with one augmentation in these 3 samples. The results showed each time a significant improvement of stiffness with augmentation but when compared with the effect of volume variation inside the bone sample, it appeared that the improvement of stiffness from augmentation might not cover the loss in stiffness from a small change in bone structure. Finally, screw design parameters were investigated, as cortical screws seemed to give as good or better stiffness results than cancellous screw. The thread pitch, the thread angle and the core diameter were analysed independently and it appeared that the most important parameter was the thread pitch with an improvement of the stiffness of +46% for cancellous screws with a smaller thread pitch. The two other factors studied (core diameter and thread angle) showed somewhat stiffer results but with a relatively small influence (less than 10%). From this study, the best screw for use in cancellous bone could be a cortical screw (diameter and pitch) with thread angles similar to a cancellous screw.
|
62 |
Comportement axial des ancrages passifs scellés au rocher : étude de l’interface barre-scellement et modélisation / Axial behavior of fully grouted rockbolts : study of the bolt-grout interface and modelingHo, Duc An 16 January 2017 (has links)
L’installation et la maintenance des ancrages passifs scellés au rocher représentent un coût important dans le budget de fonctionnement des infrastructures de transport sujettes à l’aléa rocheux. Dans ce contexte, clarifier et optimiser les méthodes de dimensionnement actuellement employées représente un enjeu fort. Or le comportement d’un ancrage passif scellé au rocher est très complexe : il fait intervenir non seulement la rupture des matériaux constituants mais également la rupture des interfaces. Par ailleurs, la résistance de l’interface barre-scellement lors de l’arrachement d’un ancrage dépend du caractère dilatant de cette interface, liée à la géométrie de la barre (verrous) et à la plastification du matériau de scellement. Le travail de cette thèse porte sur une meilleure compréhension du comportement en traction d’un ancrage passif scellé au rocher, l’objectif étant d’améliorer la conception et le dimensionnement des ancrages sollicités axialement. Premièrement, le travail a consisté à définir le comportement de l’interface barre-scellement, Pour cela, un modèle numérique a été développé afin de reproduire des essais d’arrachement, sous différentes contraintes de confinement radial, de barres d’acier de haute adhérence (HA) scellées sur une longueur de 15 cm dans un cylindre de coulis de ciment (Moosavi et al. 2005). La géométrie réelle de l’interface acier–scellement a été considérée dans le modèle. Le comportement du coulis de scellement a été représenté par un modèle de type «concrete damage plasticity» (CDP), modèle de Lubliner (1986), implémenté dans Abaqus (2012). La représentation dans une approche continue de la plastification locale et de la fissuration, a nécessité un calage pour tenir compte des effets d’échelle. Le comportement de l’interface barre-scellement a ainsi été identifié comme cohésif dommageable avec frottement, dans une bande de cisaillement de largeur entre 2 et 3 fois la hauteur des verrous. Dans l’objectif de simuler un ancrage sur le terrain, des éléments d’interface représentant le contact acierscellement (sans les verrous) ont été développés.. La performance des éléments a été testée par la modélisation d’essais réalisés par Benmokrane et al. (1995) pour des barres de HA scellées en forage dans un bloc de béton, c’est-à-dire avec des conditions-limites radiales à rigidité constante. En parallèle, afin de tester l’influence de différents paramètres (géométrie, propriétés de matériau, accessoires de mise en oeuvre) sur le comportement de l’ancrage, une campagne insitu de 36 essais d’arrachement de barres d’acier HA scellées dans un massif calcaire résistant a été réalisée. Certaines barres équipées de fibre optique ont permis d’étudier finement la mobilisation de l’interface entre la barre d’acier et le matériau de scellement lors de la sollicitation axiale. Ces observations expérimentales, comparées aux résultats de la simulation numérique des essais, ont permis de valider le modèle numérique développé et en particulier les éléments d’interface. Par ailleurs, dans nos conditions d’essais, il n’est pas noté d’effet de la longueur de scellement ou de la résistance du coulis de scellement sur la résistance de l’ancrage : la résistance est limitée par la résistance en traction de la barre d’acier. Quant à la rigidité de l’ancrage, c’est le rapport diamètre de la barre/diamètre du forage ou un coulis plus résistant qui tend à rigidifier le comportement de l’ancrage. Pour un rocher résistant et homogène, la longueur de scellement efficace est au maximum de 65cm pour les diamètres usuels de barre. Elle tend à augmenter quand le système est plus déformable : coulis de scellement moins résistant ou, pour un diamètre de barre donné, diamètre de forage plus grand. La présence de la canule d’injection ne semble pas perturber le comportement de l’ancrage. Par contre, une attention particulière doit être portée à la mise en oeuvre de la chaussette géotextile. / Fully grouted rockbolts have been used for decades for transport infrastructure exposed to rockfall hazards. However their installation and maintenance are usually costly. Therefore, understanding and optimizing of the current design method for this type of anchorage is a major challenge. This study is not simple because of the complexity of fully grouted rockbolt behavior: its failure involves not only the failure of constituent materials (rockbolt, grout, rock), but also the failure of bolt-grout and grout-rock interfaces. Moreover, the strength of bolt-grout interface depends on the interface dilatancy, which is likely linked to the geometry of ribs and to the plastification of grout material. This thesis which includes two different parts, a numerical modeling and an experimental work, contributes hence to a better understanding of fully grouted rockbolt behavior under an axial tensile load, in order to improve the current design method. Firstly the bolt-grout interface behavior in particular the force transmission between the bolt and the grout, was studied. For this purpose, a numerical model was proposed to simulate the pull-out test of a short length of 15cm of bolt grouted in a cylinder of cement hardened paste, under constant confinement pressure (Moosavi et al., 2005). In this model, the bolt-grout interface was modeled with its real geometry, including ribs. To consider the different types of behavior and failure (tension, compression and shear) of the grout, this one was modeled by the concrete damage plasticity model (CDP model), which was developed by Lubliner et al. (1986) and implemented in Abaqus (2012). Moreover, the localization of plastic strain and the fracture of grout imply different size effects, which were also taken into consideration within the calibration of the parameters of the CDP model. The bolt-grout interface behavior was also identified to be a cohesive-damage friction interface within a 2 or 3 times the height of the ribs wide shear band. From these numerical modeling results, a constitutive model for the bolt-grout interface was developed to replace the real geometry of bolt-grout contact, in order to model in-situ anchors, whose length is much longer than that of anchors in laboratory tests. The interface model was then validated by performing the numerical simulation of the pullout tests of grouted bolt in borehole drilled in concrete block, carried out by Benmokranne et al. (1995), under constant rigidity of confinement instead of constant pressure of confinement. For the second part of this study, a series of 36 pull-out field tests of fully grouted rockbolt in a rigid limestone rock wall was conducted in order to study the influence of different parameters on the behavior of rock anchors (geometry, material characteristics, accessories). Certain of the bolts equipped with optical fiber allowed bolt strains to be measured along their length, and hence, the stress mobilization along the bolt-grout interface to be studied. The comparison between experimental and numerical results permitted us to validate the numerical simulation, in particular the proposed interface model. With our field test conditions, no influence of grouting length or grout resistance on the strength of anchor was noticed and the bolt strength was limited by the tensile strength of the steel rebar. It is the ratio of bolt diameter/borehole diameter or a stronger grout that tends to stiffen anchor. In a resistant and homogeneous rock and for usual rebar diameters, the efficient grouting length is lower than 65cm. This length increases when the system is more deformable, by using a less resistant grout or a higher grout thickness. The instalation of the cannula seem not to affect the anchor’s strength. However, a particular attention must be paid to the use of the geotextile sock.
|
63 |
A influência das ações repetidas na aderência aço-concreto / The influence of repeated loads on the steel-concrete bondFernandes, Rejane Martins 25 April 2000 (has links)
Este trabalho descreve o comportamento da aderência do concreto armado sob ações monotônicas e repetidas através de uma revisão bibliográfica e de ensaios de arrancamento padronizados. A influência de alguns parâmetros foi analisada, como diâmetro da armadura, tipo e amplitude de carregamento. Os resultados dos ensaios monotônicos foram comparados com as recomendações do CEB-FIP MC 1990, EUROCODE 2 e NB-1/78. Também foi realizada a análise numérica da aderência monotônica por meio de elementos finitos. Considerou-se a barra lisa, elementos de contato entre o aço e concreto e comportamento elástico-linear dos materiais; pois a ruína experimental da ligação ocorreu pelo corte do concreto entre as nervuras. A resistência monotônica da ligação ficou compreendida entre condições boas e ruins de aderência. Os resultados calculados de acordo com as normas foram muito diferentes em relação aos valores experimentais, e apresentaram uma dispersão muito grande. A força repetida ocasionou a perda de aderência pelo crescimento progressivo dos deslizamentos. Os modelos numéricos não representaram o comportamento experimental, devido à resposta força-deslizamento não-linear. / This research describes the bond behaviour in reinforced concrete under monotonic and repeated loading through a state-of-art and standard pull-out tests. The influence of some parameters was analysed as deformed bar diameter, type and amplitude of loading. The monotonic test results were compared with recommendations of CEB-FIP MC 1990, EUROCODE 2 and NB-1/78. The numerical analysis of monotonic bond was realized through finite elements. It was considered smooth bar, contact elements between the steel and concrete, and materials as of linear-elastic behaviour, because the experimental degradation of bond was caused by concrete between the ribs sheared off. The monotonic bond resistance resulted between good and bad bond conditions. The results calculated according to the codes were very different from the experimental values and very disperse. The repeated loading causes bond degradation by progressive increase of slip. The numerical specimens did not represent the experimental behaviour because of the non-linear load-slip response.
|
64 |
Contribuição ao estudo da aderência entre barras de aço e concretos auto-adensáveis / Contribution to the study of the bond between steel bars and self-compacting concreteAlmeida Filho, Fernando Menezes de 18 August 2006 (has links)
A busca por novos materiais estruturais visa a melhoria da qualidade e desempenho das estruturas, impulsionando o desenvolvimento científico e tecnológico. O concreto auto-adensável surgiu da necessidade de se dispensar o difícil e oneroso trabalho de vibração do concreto, sendo definido como um material capaz de fluir dentro de uma fôrma, passando pelas armaduras e preenchendo a mesma, sem o uso de equipamentos de vibração. Esta pesquisa caracteriza-se como um estudo teórico-experimental da aderência aço-concreto, utilizando concreto do tipo auto-adensável, mediante ensaios monotônicos de flexão em vigas e de arrancamento seguindo o modelo padrão do Rilem-Ceb-Fip (1973). O estudo considerou como parâmetros fundamentais o tipo de concreto (auto-adensável e convencional), a resistência à compressão do concreto e os diâmetros das barras. Ainda, realizou-se um estudo com relação à variabilidade do concreto auto-adensável nos estados fresco e endurecido, constatando que este possui pequena variação. De posse dos resultados, buscou-se verificar a previsão das formulações empregadas na literatura e pelos principais códigos internacionais. De acordo com os resultados, o comportamento dos modelos de viga e de arrancamento para ambos os concretos foi similar, mostrando que o concreto auto-adensável possui características semelhantes ao concreto convencional, com as vantagens da trabalhabilidade no estado fresco. Quanto à análise numérica, os modelos desenvolvidos representaram de forma satisfatória o comportamento dos ensaios, e forneceram uma idéia do comportamento da tensão de aderência na sua interface. Com relação às formulações teóricas, verificou-se que tanto para o concreto convencional quanto para o auto-adensável, ocorre uma superestimativa da resistência de aderência. / The search for new structural materials aims the improvement of the structures performance, pushing the scientific and technological development. Self-compacting concrete (SCC) origin was due to the need to avoid the difficult and expensive process of concrete vibration. It has been defined as a material capable to flow inside a formwork, passing through the reinforcement and filling it completely, without using of any special equipment. This research is characterized as a theoretical and experimental study of steel-concrete bond, using SCC, through pull-out tests and beam tests standardized by Rilem-Ceb-Fip model. The study considered as main parameters the concrete type (ordinary concrete and SCC), its compressive strength and the steel bars diameters. Yet, a study of the variability of the properties of SCC, both in fresh and hardened state was also performed, showing that SCC is a very reliable material. The obtained results were compared with the ones established by the related bibliography and by the main international codes. According to the results, the behavior of the beams and pull-out tests were very similar for both concretes (SCC and OC), with the well know advantages for the SCC in fresh state. About the numerical approach, the developed models represented satisfactory the test behavior (beam and pull-out) and gave an idea of the bond stress behavior on the steel-concrete interface. About the theoretical formulations, it was verified the they usually overestimate the bond strength, for both types of concrete.
|
65 |
Uso do método de elementos finitos na análise biomecânica de parafusos do sistema de fixação vertebral / Use of finite element analysis in the biomechanical analysis of screws used for spine fixation system.Macedo, Ana Paula 09 November 2009 (has links)
O parafuso como elemento de ancoragem de sistemas de fixação vertebral já é há muito utilizado. Porém a forma de distribuição da tensão gerada por ele na região de ancoragem não está ainda bem clara. O método de elementos finitos (MEF) é um método matemático desenvolvido no século passado e permite, quando em um estudo estático, avaliar reações internas de estruturas ao se aplicar uma força. Este estudo teve por objetivo analisar as tensões e deformações internas geradas por parafusos do sistema de fixação vertebral por meio do MEF. Os Parafusos USS1 de 5, 6 e 7 mm de diâmetro e 45 mm de comprimento (Grupo 1 G1, Grupo 2 G2 e Grupo 3 - G3) e os parafusos USS2 anterior, USS2 posterior de 6,2mm de diâmetro e USS1 de 6 mm de diâmetro e 30 mm de comprimento (Grupo 4 G4, Grupo 5 G5 e Grupo 6 - G6) foram utilizados neste estudo. Para validação dos modelos foram utilizados: ensaio mecânico de arrancamento do parafuso em corpos de prova de poliuretana com densidade de 0,16 g/cm3 e resultados de ensaios de arrancamento encontrados na literatura. Foi confeccionado um modelo tridimensional para cada conjunto parafuso e poliuretana estudado no programa SolidWorks®2006. Foram confeccionados 30 corpos de prova em poliuretana para validação de G1, G2 e G3, sendo 10 corpos de prova para cada grupo. O orifício piloto foi realizado por broca de 3,8 mm para G1 e 4,8 mm para G2 e G3. Os modelos dos grupos G4, G5 e G6 foram validados por resultados encontrados na literatura de ensaios em poliuretana de mesma densidade e orifício piloto realizados por sonda de 3,8 mm para G4 e G5 e 4,8mm para G6. A análise pelo método de elementos finitos, foi realizada no programa ANSYS®Workbench 10.0. A validação foi obtida pela comparação da rigidez relativa obtida no ensaio mecânico e o resultado da simulação pelo MEF. Foram encontradas divergências de 8,3% para G1, 3,1% para G2, 0,5% para G3, 14,4% para G4, 9,5% para G5 e 10,3% para G6, sendo todas consideradas aceitáveis. Validados os modelos, os grupos G4 e G6, utilizados na fixação anterior, foram submetidos à força de compressão, tração e dobramento lateral. Os grupos G5 e G6, empregados na fixação posterior, foram submetidos à força de compressão, tração, flexão e extensão. Na fixação anterior as menores tensões foram encontradas para G4 e as maiores para G6 para todas as forças aplicadas. Na fixação posterior as menores tensões foram encontradas para G5 e as maiores para G6 para todas as forças aplicadas. As maiores tensões foram geradas ao se realizar o dobramento lateral na fixação anterior e a extensão na fixação posterior. / Screws have been used to stabilize spine fixation systems. However, stress distribution around them is not clear yet. The finite element method (FEM) is a mathematic model developed in the last century and allows evaluating internal reactions of the structure submitted to a load in a static analysis. The present study aimed to evaluate stress and internal deformation caused by screws of the spine fixation system using FEM. USS1 screws measuring 5, 6 and 7 mm in diameter and 45 mm in length (Group 1 G1, Group 2 G2 and Group 3 G3) and the screws USS2 anterior, USS2 posterior measuring 6.2 mm in diameter and USS1 measuring 6 mm in diameter and 30 mm in length (Group 4 G4, Group 5 G5 and Group 6 G6) were used in the present study. For validation models, mechanical tests evaluating pull-out strength in polyurethane samples presenting density of 0.16 g/cm3, and results of pull-out tests related in the literature were used. Threedimensional (3D) models were built for each screw-polyurethane sample set using SolidWorks® 2006 software. Thirty polyurethane samples were made for G1, G2 and G3 validation, 10 for each group. The pilot hole was made using a 3.8 mm drew for G1, and 4.8 mm for G2 and G3. The G4, G5 and G6 models were validated based on literature results that used polyurethane of same density and pilot hole made using 3.8 mm probe for G4 and G5, and 4.8 mm for G6. The FEM analysis was performed using ANSYS®Workbench 10.0 software. Validation was reached by comparing relative stiffness obtained in mechanical tests and results of FEM simulation. Differences of 8.3% for G1, 3.1% for G2, 0.5% for G3, 14.4% for G4, 9.5% for G5, and 10.3% for G6 were found, but all values were considered acceptable. Validated the models, G4 and G6 groups, used for anterior fixation, were submitted to compression, traction and lateral bending load. The G5 and G6 groups, used for posterior fixation, were submitted to compression, traction, flexion and extension force. In the anterior fixation, lower stress were found for G4, and greater for G6 at all applied forces. In the posterior fixation, lower stress were found for G5 and greater for G6 at all applied forces. Greater stress were caused simulating lateral bending in the anterior fixation, and extension in the posterior fixation.
|
66 |
Estudo da interface bloco/graute em elementos de alvenaria estrutural / Study of the block/grout interface in concrete and clay block masonry structuresSoto Izquierdo, Orieta 08 April 2015 (has links)
A construção de edifícios em alvenaria estrutural tem evoluído de maneira significativa no Brasil. Os edifícios têm se tornado cada vez mais altos, atingindo a marca de 20 pavimentos. Quanto mais altos os edifícios, maiores se tornam os níveis de compressão provenientes dos carregamentos verticais e a sua composição com as ações devidas ao vento e ao desaprumo, obrigando a um maior emprego da alvenaria estrutural armada. A aderência bloco/graute como fator limitante à capacidade do conjunto armadura/graute/bloco na absorção da compressão e tração simples ou da tração oriunda da flexão não é especificada nas normas tanto nacionais como internacionais. Este trabalho tem como objetivo principal estudar o comportamento da interface bloco/graute, tanto para blocos de concreto como cerâmicos e com a presença ou não de armadura, submetidos a solicitações que provocam tração e compressão. Recursos experimentais e numéricos foram realizados para o desenvolvimento da presente pesquisa. Foram feitos ensaios de caracterização dos materiais, dos componentes e da alvenaria, além de ensaios de \"push-out\" (empurramento) para determinar a resistência de aderência na interface graute/bloco e ensaios de \"pull-out\" (arrancamento) considerando-se a presença de barras de armadura para o estudo do comportamento do conjunto graute/bloco/armadura utilizados. Posteriormente foram realizadas modelagens computacionais no programa DIANA, que é baseado no método dos elementos finitos, para prever o comportamento estrutural dos modelos. A partir dos resultados experimentais e numéricos pôde-se concluir que existe uma boa aderência entre as paredes dos blocos de concreto e o graute, suficiente para evitar o escorregamento, sendo possível mobilizar toda a resistência de tração das barras de armadura de diâmetros usuais, desde que devidamente ancoradas. Já com os blocos cerâmicos observa-se uma menor aderência entre as paredes dos blocos e o graute, podendo ocorrer o escorregamento do material de enchimento, antes que a armadura alcance sua tensão de escoamento. O graute de maior resistência à compressão e menor fator água cimento (graute G30) apresentou maior resistência de aderência em relação ao graute mais fraco (graute G14) e de maior fator água/cimento. Quanto aos limites estabelecidos para a tensão de escoamento das armaduras, observa-se que, no caso de blocos de concreto, não deve haver restrição. Em contraposição, quanto aos blocos cerâmicos, o problema é mais complexo, cabendo a realização de mais ensaios para a confirmação de limites, com a variação de blocos e grautes. Os resultados do estudo paramétrico apontam limites que devem ser adotados no caso de diâmetro superior a 10 mm. De maneira simplificada, como ponto para futuras verificações pode-se propor: 75% para Ø 12,5 mm, 50% para Ø 16 mm e 25% para Ø 20 mm. As análises numéricas realizadas nos modelos ensaiados a push-out e pull-out representaram adequadamente o comportamentos observado em laboratório, permitindo a realização da análise paramétrica. / The construction of structural masonry buildings has evolved significantly in Brazil. The buildings have become ever higher, reaching the level of 20 floors. Higher buildings lead to lager compression levels, coming from the vertical loads combined to the horizontal actions due to wind and lack of verticality, obliging a greater use of reinforced structural masonry. The block/grout adherence is not specified in both national and international standards. This work aims to study the behavior of the block/grout interface, for both concrete and clay blocks, with and without reinforcement, submitted to tensile and compressive forces. Experimental and numerical resources were used to development of this study. The experimental program studied the masonry behavior using push-out specimens to determine the bond strength between the grout and the concrete unit, and pull-out specimens to study the behavior of the interface of the grout/block/reinforcement. Computational modelling was carried out using the FEM software Diana, which has a library with constitutive models suitable for civil engineering application, to complete the study and understand the structural behavior of the block/grout interface. The experimental results showed that there is a good bond between the concrete blocks internal faces and the grout, enough to prevent infill-slippage, and that the whole tensile strength of the usual reinforcement rebars is achieved provided they are properly anchored. Nevertheless, for clay blocks there is a low bond between the clay blocks internal faces and the grout, allowing the infill-slippage before the reinforcement bars reach their yield stress. The higher strength grout with lower water/cement ratio (grout G30) presented higher bond strength compared to the lower strength grout and higher water/cement ratio (grout G14). In the case of concrete blocks there should be no restriction limits on the yield stress of reinforcement, in a practical sense and considering other prescribed limits. In contradiction, in the case of clay blocks, additional tests should be carried out for establishing limits, with varying blocks and grouts. The parametric analysis indicates limits that should be adopted for a diameter larger than 10 mm. The authors of this research suggest 75% for Ø 12.5 mm, 50% for Ø 16 mm and 25% for Ø 20 mm as a reference point for future investigations. The numerical analysis showed that the computer models of the push-out and pull-out specimens represented adequately the behavior of the physical models, and thus can be used in parametric analysis.
|
67 |
[en] BEHAVIOR OF GEOGRIDS IN REINFORCED SOIL WALL AND PULLOUT TESTS / [pt] COMPORTAMENTO DE GEOGRELHAS EM MURO DE SOLO REFORÇADO E EM ENSAIOS DE ARRANCAMENTOLEONARDO DE BONA BECKER 09 August 2006 (has links)
[pt] No presente trabalho foi estudado o comportamento de um
muro de solo
reforçado com 5m de altura e 1700m de extensão, construído
como parte do dique
que compõe o Depósito de Resíduos de Bauxita 7 da ALCOA
Alumínio S.A. em
Poços de Caldas, MG. Neste muro foram empregados um solo
residual siltoargiloso
obtido no local e geogrelhas. O muro foi instrumentado
para medição de
deslocamentos horizontais e verticais durante a
construção. Na mesma área,
também foi construído um aterro experimental de 2,6m de
altura que permitiu a
realização de 16 ensaios de arrancamento de grandes
dimensões. Foram realizados
ensaios de laboratório para definir os parâmetros de
resistência e deformabilidade
do solo. Os parâmetros obtidos foram empregados em
simulações numéricas da
construção do muro e dos ensaios de arrancamento pelo
Método dos Elementos
Finitos, utilizando-se o programa PLAXIS 2D v.8. Os
resultados obtidos
demonstraram que os deslocamentos ocorridos durante a
construção do muro são
comparáveis a valores reportados por outros autores. As
previsões numéricas da
construção do muro e dos ensaios de arrancamento
apresentaram boa
concordância com os resultados medido em campo. Constatou-
se que a resistência
ao arrancamento obtida foi superior às previsões baseadas
em formulações
tradicionais da literatura. / [en] The behavior of a 5m high and 1700m long reinforced soil
wall was
studied in this work. The wall constitutes the upper part
of a dike constructed in
Poços de Caldas-MG, Brazil, by Alcoa Aluminum S.A. to
contain Bauxite
residues. The wall was constructed using geogrids and a
residual silty-clay. Two
wall sections were instrumented. Horizontal and vertical
displacements were
monitored during construction. An 2.6m high experimental
fill was constructed to
conduct 16 large-scale pullout tests. Soil laboratory
tests were conducted to define
the strength and deformability parameters. The
construction of the wall and the
pullout tests were simulated using the PLAXIS 2D v.8
Finite Element Method
code. The numeric predictions agree well with the field
results. The measured
horizontal displacements show good agreement with results
reported by other
authors and the pullout resistance was found to be greater
than the values
estimated by traditional methods.
|
68 |
Estudo da influência das fibras metálicas no comportamento da aderência entre barras de aço e concretos de diferentes classes de resistência / Study of the influence of steel fibers on the behavior of bond between steel reinforcement and concretes of different strength classesSantana, Igor Vinicius 18 September 2014 (has links)
O emprego e o funcionamento do concreto armado como material estrutural só é possível devido à aderência entre o aço e o concreto. A aderência atua como um mecanismo de transferência de forças, além de garantir a compatibilidade de deformações entre a armadura e o concreto circundante. Inúmeros fatores influenciam no seu comportamento, desde as variáveis relacionadas aos componentes fundamentais do material: como o diâmetro da barra de aço e a resistência à compressão do concreto, até as variáveis que não são essenciais para a sua mobilização como é o caso das fibras metálicas. Sendo assim, buscou-se com o presente trabalho estudar o comportamento da aderência entre barras de aço e concretos de resistência convencional e de alta resistência com adição de fibras metálicas. Para tanto foram pesquisados alguns dos modelos teóricos que se dispõem a representar o comportamento da aderência, como os prescritos pela Associação Brasileira de Normas Técnicas (ABNT) NBR 6118:2003 e o seu projeto de revisão, pela International Federation for Structural Concrete (fib) Bulletin 65: Model Code 2010, pelo American Concrete Institute ACI 318:2014 e os modelos propostos por alguns autores encontrados na bibliografia específica, com posterior comparação dos seus resultados com os resultados obtidos experimentalmente mediante ensaios de arrancamento baseado no procedimento padrão proposto pela RILEM-FIP-CEB (1973). Foram empregadas no estudo experimental, barras de aço com diâmetros de 10 mm e 16 mm em corpos-de-prova moldados com concretos de resistências à compressão de 30 MPa, 60 MPa e 90 MPa. As fibras metálicas utilizadas possuíam comprimentos de 13 mm e 25 mm nos teores volumétricos de 0, 1% e 1,5%, além da hibridização para um volume de 1%. Os resultados experimentais demonstraram que para os teores utilizados, as fibras metálicas não influenciaram significativamente os parâmetros quantitativos da aderência como a tensão última de aderência e o seu respectivo deslizamento, porém foram decisivas para o tipo e a forma da ruptura predominantemente dos concretos de alta resistência. Da analise comparativa entre os resultados experimentais e teóricos verificou-se que os modelos do CEP-FIB (2010) e de Huang et al. (1996), com destaque para este último, foram os modelos que melhor representaram o comportamento da curva tensão de aderência versus deslizamento. Em relação à resistência de aderência de cálculo o ACI 318:2014 foi o código que apresentou os resultados mais conservadores e o código brasileiro, mesmo em seu projeto de revisão, foi o que apresentou resultados com menores diferenças em relação aos valores experimentais. / The use and operation of reinforced concrete as a structural material is only possible due to the bond between reinforcement and concrete. The adherence acts as a mechanism to transfer forces and ensures the compatibility of deformations between the reinforcement and the surrounding concrete. Several factors influence its behavior, since the variables related to the fundamental components of the material: as the diameter of the reinforcement and the compressive strength of the concrete, as the variables that are not essential for its mobilization as the steel fibers. Thus, it sought with this present work to study the behavior of bond between steel reinforcement and conventional strength concrete and high strength concrete with addition of steel fibers. For that, some of the analytical models that seek to represent the behavior of bond were researched as prescribed by the Brazilian Association of Technical Standards (ABNT) NBR 6118:2003 and its project review, by the International Federation for Structural Concrete (fib) Bulletin 65: Model Code 2010, by the American Concrete Institute ACI 318:2014 and models proposed by some authors found in the research literature, with subsequent comparison of its results with those obtained experimentally by pullout tests based on the standard test proposed by RILEM-CEB-FIP (1973). Steel reinforcements with diameters from 10 mm to 16 mm in specimens molded with concretes with compressive strength of 30 MPa, 60 MPa and 90 MPa were used. The steel fibers used had lengths of 13 mm and 25 mm in volumetric rates of 0,1% and 1,5%, in addition to hybridization to a volume of 1%. The experimental results showed that for the rates used, the steel fibers had no significant influence on quantitative parameters of the adherence as the bond strength and its respective slip, but they are decisive for the type and mode of failure of high-strength concrete. The comparative analysis between experimental and theoretical results showed that the models of CEP-FIB (2010) and Huang et al. (1996), especially the latter, were the models that best represented the behavior of the bond stress-slip relationship. Regarding to the design bond strength, the ACI 318:2014 was the model code that presented the most conservative results and the Brazilian code, even in its draft version, presented the results with minor differences from the experimental values.
|
69 |
Soil-Pile, Pile Group Foundations and Pipeline Systems Interaction Behavior Extending Saturated and Unsaturated Soil MechanicsAl-Khazaali, Mohammed 25 February 2019 (has links)
Rapid growth in population along with positive trends in global economy over the past several decades has significantly contributed to an increased demand for various infrastructure needs worldwide. For this reason, the focus of this thesis has been directed towards extending the mechanics of unsaturated soils, which is an emerging geotechnical engineering field to investigate the behavior of two key infrastructure systems, namely pile foundations and energy pipeline systems. The mechanism of soil-pile foundations and soil-pipeline systems interaction behavior has several similarities.
Both these infrastructure facilities require comprehensive understanding of the soil-structure interaction mechanism. Reliable estimation of mechanical properties of both the soil and the soil-structure interface is required for the rational interpretation the load-displacement behavior of pile foundations and pipeline systems. Currently, the design of systems is predominantly based on design codes and guidelines that use empirical procedures or employ the principles of saturated soil mechanics. In many scenarios, pile foundations extend either totally or partly in unsaturated soils as the groundwater table level in many regions is at a greater depth. Such scenarios are commonly encountered in semi-arid and arid regions of the world. In addition, pipeline systems are typically buried at shallow depths in unsaturated soil strata, which are susceptible to wetting and drying, freezing and thawing cycles or both, due to seasonal environmental changes. Capillary stress or matric suction in the unsaturated zone increases the effective stress contribution towards the shear strength and stiffness of soil and soil-structure interface. Extending saturated soil mechanics to design or analyze such structures may lead to erroneous estimation of pile foundation carrying capacity or loads transferred on pipeline body from the surrounding unsaturated soil.
Experimental, analytical and numerical investigations were undertaken to study the behavior of single pile, pile group, and pipeline systems in saturated and unsaturated sands under static loading. The experimental program includes 40 single model pile and 2×2 pile group, and six prototype pipeline tests under saturated and unsaturated condition. The results of the experimental studies suggest that matric suction has significant contribution towards the mechanical behavior of both pile foundation and pipeline system.
The axial load carrying capacity of single pile and pile group increased approximately 2 to 2.5 times and the settlement reduced significantly compared to saturated condition. The influence of matric suction towards a single pile is significantly different in comparison to pile group behavior. The cumulative influence of matric suction and stress overlap of pile group behavior in sandy soils result in erroneous estimation of pile group capacity, if principles of saturated soil mechanics are extended. Group action plays major role in changing the moisture regime under the pile group leading to incompatible stress state condition in comparison to single pile behavior.
On the other hand, the peak axial load on the pipe is almost 2.5 folds greater in unsaturated sand that undergoes much less displacement in comparison to saturated condition. Such an increase in the external axial forces may jeopardize the integrity of energy pipeline systems and requires careful reevaluation of existing design models extending the principles of unsaturated soil mechanics. Two analytical design models to estimate the axial force exerted on pipeline body were proposed. The proposed models take account of matric suction effect and soil dilatancy and provide smooth transition from unsaturated to saturated condition. These models were developed since measurement of the unsaturated soil and interface shear strength and stiffness properties need extensive equipment that require services of trained professional, which are expensive and time consuming. The models utilize the saturated soil shear strength parameters and soil-water characteristic curve (SWCC) to predict the mechanical behavior of the structure in saturated and unsaturated cohesionless soils. The prototype pipeline experimental results were used to verify the proposed models. The predicted axial force on pipeline using the proposed models agrees well with the measured behavior under both saturated and unsaturated conditions.
Moreover, numerical techniques were proposed to investigate the behavior of pile foundation and pipeline system in saturated and unsaturated sand. The proposed methodology can be used with different commercially available software programs. Two finite element analysis programs were used in this study; namely, PLAXIS 2D (2012) to simulate soil-pile foundation behavior and SIGMA/W (2012) to simulate soil-pipeline system behavior. The proposed techniques require the information of unsaturated shear strength and stiffness, which can be derived from saturated soil properties and the SWCC. The model was verified using pile and pipeline test results from this study and other research studies from the published literature. There is a good agreement between the measured behavior and the predicted behavior for both the saturated and unsaturated conditions. The methodology was further extended to investigate the behavior of rigid and flexible pipelines buried in Indian Head till (IHT) during nearby soil excavation activity. The simulation results suggest that excavation can be extended safely without excessive deformation to several meters without the need for supporting system under unsaturated condition.
The studies summarized in the thesis provide evidence that the principles of saturated soil mechanics underestimate the pile foundations carrying capacity as well as the axial force exerted on pipelines in unsaturated soils. Such approaches lead to both uneconomical pile foundation and unsafe pipeline systems designs. For this reason, the pile and pile group carrying capacity and pipeline axial force should be estimated taking into account the influence of matric suction as well as the dilatancy of the compacted sand. The experimental studies, testing techniques along with the analyses of test results and the proposed analytical and numerical models are useful for better understanding the pile foundation and buried pipeline behaviors under both saturated and unsaturated conditions. The proposed analytical and finite element models are promising for applying the mechanics of unsaturated soils into conventional geotechnical engineering practice using simple methods.
|
70 |
Comportement mécanique et durabilité de structures en béton renforcées par des armatures composites internes / Mechanical behaviour and durability of concrete structures reinforced by internal composite rebarsRolland, Arnaud 27 March 2015 (has links)
La corrosion des armatures constitue la principale cause de dégradation des ouvrages en béton armé, et occasionne des coûts élevés de maintenance/réparation. Pour prévenir ce problème sur ouvrages neufs, une solution consiste à renforcer les structures en béton par des armatures non-métalliques de type Polymère Renforcé de Fibres (PRF), généralement à base de fibres de verre, de carbone ou d'aramide. Il existe aujourd'hui plusieurs textes réglementaires consacrés aux armatures PRF, notamment aux USA, au Canada et au Japon, et de nombreux ouvrages en béton armé par barres en PRF ont d'ailleurs été construits dans ces pays. Cependant, si l'utilisation de ces nouvelles armatures semble à priori prometteuse, elle suscite encore des réserves de la part des maîtres d'ouvrages, notamment en France. Il subsiste en effet des incertitudes sur le comportement à long terme des structures renforcées par PRF, et plus particulièrement sur la durabilité en milieu alcalin des armatures à matrice vinylester ou époxy renforcée par des fibres de verre (PRFV), qui sont actuellement les plus utilisées, ou encore sur le vieillissement de l'interface PRF/béton. Dans ce contexte, la présente étude vise à développer pour la première fois en France, un ensemble de méthodologies permettant, d'une part, de caractériser les principales propriétés physiques, mécaniques et d'interface des différentes armatures en PRF disponibles sur le marché, mais également d'évaluer la durabilité d'armatures en PRFV (les plus représentatives du marché) et de l'interface PRFV/béton à travers des procédures pertinentes de vieillissements accélérés. La première partie de l'étude a donc été consacrée à la caractérisation physique et mécanique d'une sélection d'armatures du commerce, confectionnées à base de fibres de verre, de carbone ou d'aramide, et au comportement mécanique de l'interface entre ces PRF et le béton. Outre la caractérisation microstructurale des PRF par techniques de microscopie et d'analyse thermique, la mise en place de dispositifs d'essais de traction et de flexion 3 points à appuis rapprochés (Short-beam test) a permis d'accéder respectivement aux propriétés mécaniques en traction (module d'élasticité, résistance) et à la résistance au cisaillement inter-laminaire des armatures. Des essais spécifiques d'arrachement (Pull-out) ont ensuite permis d'évaluer l'influence de différents paramètres (type de fibre, diamètre et géométrie de surface des barres) sur le mécanisme de transfert d'effort à l'interface armature/béton. Une grande originalité de l'approche proposée réside dans l'instrumentation d'une partie des corps d'épreuve par des capteurs de déformation à fibre optique disposés au niveau de l'interface armature/béton ; ce dispositif de mesures réparties permet d'accéder à des informations locales comme le profil des déformations de traction de l'armature, et d'en déduire la longueur d'ancrage des différentes armatures dans le béton. En complément de l'étude expérimentale précédente, un travail de modélisation analytique et numérique a été initié en vue de simuler les essais d'arrachement et d'appréhender plus finement les mécanismes d'interface mis en jeu entre l'armature et le béton lors de ces essais. Dans cette optique, un modèle analytique d'interface a tout d'abord été proposé, puis introduit dans un modèle aux éléments finis (modèle d'endommagement de zones cohésives). Enfin, un protocole de vieillissement accéléré a été appliqué à des barres en PRFV seules ou noyées dans un milieu cimentaire. Les caractéristiques résiduelles des armatures et des interfaces ont été évaluées à différentes échéances de vieillissement (jusqu'à 240 jours). Hormis une diminution des propriétés mécaniques des barres soumises à une immersion directe en solution alcaline, cette condition pouvant être considérée comme très sévère par rapport aux conditions de service, il n'a pas été observé de dégradation des propriétés d'adhérence PRF/béton par rapport à l'état initial / Corrosion of the steel reinforcing bars (rebars) is the main process involved in the degradation of reinforced concrete (RC) structures, and has large repercussions on the maintenance/reparation expenses. To prevent such degradations on new infrastructures, the use of corrosion-free reinforcements, such as Fiber Reinforced Polymer (FRP) bars based on glass, carbon or aramid fibers, is gaining interest. Specific guidelines are already available in several countries (USA, Canada or Japan for instance), that define the design principles and good practices for this type of internal rebars; beside, many FRP RC structures have been built and are in service in these countries. Although the development of these new reinforcing bars is quite promising, infrastructures owners are still reluctant for their wide-scale use, especially in France. There are still major concerns regarding the long term behavior of FRP RC structures, and more particularly, the durability of glass fibers reinforced polymers (GFRP) when subjected to an alkaline environment, and the ageing behavior of the GFRP/concrete bonding as well. In this context, the present study aims at developing for the first time in France, a set of methodologies that allows : to characterize the main physical/mechanical properties of different types of FRP bars from the marketto assess the durability of GFRP bars (the most common type of bar) and their interface with concrete through relevant accelerated ageing procedures. The first part of this study was thus devoted to the physical/mechanical characterization of a selection of commercially available FRP rebars, based on glass, carbon or aramid fibers, and to the mechanical behavior of corresponding FRP/concrete interfaces. Beside the microstructural characterization of the various FRP materials by microscopy and thermal analysis techniques, tensile and short beam tests were developed in order to determine the tensile properties (Young's modulus and strength) and the interlaminar shear strength (ILSS) of the bars. Specific pull-out tests then made it possible to evaluate the influence of several parameters (type of fibers, diameter and surface geometry of the bars) on the mechanism of load transfer at the bar/concrete interface. A main originality of the proposed approach relied on the instrumentation of several test bodies by optical fiber strain sensors, which were installed along the bar/concrete interface. Such a distributed measurement system provided local information in the form of tensile strain profiles of the bars along the interface, and made it possible to determine the effective transfer length of the various types of FRP bars. As a complement to the previous experimental study, an analytical and numerical modeling work was initiated to simulate the pull-out tests and investigate more closely the interfacial mechanisms involved in the FRP bar/concrete bond behavior. In this line, an improved interface model was first proposed, which was then implemented in a finite element model (cohesive zone model formulated in the context of damage mechanics).Finally, an accelerated ageing protocol was developed and applied to the GFRP bars, either alone or embedded in a concrete medium. The retention properties of both bars and interfaces were determined after various periods of exposure (up to 240 days). Except a drop of tensile properties observed for GFRP bars that were directly immersed in an alkaline solution, which is considered as a very severe environment compared to actual service conditions, no significant loss of interfacial properties was detected on aged specimens compared to the initial state
|
Page generated in 0.0752 seconds