• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • 2
  • Tagged with
  • 17
  • 17
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of dynamic effects in microparticle adhesion using Atomic force microscopy

Kaushik, Anshul 17 February 2005 (has links)
The adhesion and removal of particles from surfaces is a contemporary problem in many industrial applications like Semiconductor manufacturing, Bioaerosol removal, Pharmaceuticals, Adhesives and Petroleum industry. The complexity of the problem is due to the variety of factors like roughness, temperature, humidity, fluid medium etc. that affect pull-off of particles from surfaces. In particle removal from surfaces using fluid motion, the dynamic effects of particle separation will play an important role. Thus it is essential to study the dynamic effects of particle removal. Velocity of pull-off and force duration effects are two important dynamic factors that might affect pull-off. Particle adhesion studies can be made using the Atomic Force Microscope (AFM). The velocity of pull-off and force duration can be varied while making the AFM measurements. The objective of the current work is to obtain the dependence of pull-off force on pull-off velocity. Experiments were conducted using AFM and the data obtained from the experiments is processed to obtain plots for pull-off force vs. particle size and pull-off force vs. pull-off velocity. The pull-off force is compared with the predictions of previous contact adhesion theories. A velocity effect on pull-off force is observed from the experiments conducted.
2

Evaluation of Bond Strength between Overlay and Substrate in Concrete Repairs

Neshvadian Bakhsh, Keivan January 2010 (has links)
Good bond strength between overlay and substrate is a key factor in performance of concrete repairs. This thesis was aimed at studying the evaluation of bond strength between repair material and substrate at the interface. Many factors such as surface roughness, existence of micro cracks, compaction, curing etc influence the bond strength. The quality assurance of the bond strength requires test methods that can quantify the bond strength as well as identify the failure mode. There have been numerous investigations led to development of different test methods. The forces which are applied in each test and the failure mode are important in order to choose the proper test. An interpretive study on test methods is presented. While this study can provide individually useful information on bond strength and bond characterization, it also contains discussions about each test and comparison of test methods.
3

Studium síly nutné k odtržení hrotu AFM od povrchu grafitové/graphenové vrstvy s ohledem na aplikace v oblasti nanosenzorů / Study of AFM pull-off force on graphite/graphene layers in the perspective of nanosensoric applications

Pagáčová, Lenka January 2012 (has links)
The diploma thesis deals with force-distance spectroscopy method as a tool for determining pull-off force on graphit/graphene sheets under varied conditions. There is described also a contact angle method which is used to idetify contact angles of water on six investigated samples. Results of both method were discussed with respect to utilization of force-distance spectroscopy in wetting measurements of materials. Finally it was carried out modification of graphen sheet by local anodic oxidation.
4

Relationship Between Surface Free Energy and Total Work of Fracture of Asphalt Binder and Asphalt Binder-Aggregate Interfaces

Howson, Jonathan Embrey 2011 August 1900 (has links)
Performance of asphalt mixtures depends on the properties of its constituent materials, mixture volumetrics, and external factors such as load and environment. An important material property that influences the performance of an asphalt mixture is the surface free energy of the asphalt binder and the aggregate. Surface free energy, which is a thermodynamic material property, is directly related to the adhesive bond energy between the asphalt binder and the aggregate as well as the cohesive bond energy of the asphalt binder. This thermodynamic material property has been successfully used to select asphalt binders and aggregates that have the necessary compatibility to form strong bonds and resist fracture. Surface free energy, being based on thermodynamics, assumes the asphalt binder is a brittle elastic material. In reality, the asphalt binder is not brittle and dissipates energy during loading and unloading. The total work of fracture is the culmination of all energy inputted into the sample to create two new surfaces of unit area and is dependent on the test geometry and testing conditions (e.g., temperature, loading rate, specimen size, etc.). The magnitude of the bond energy (either adhesive or cohesive) can be much smaller in magnitude when compared to the total work of fracture measured using mechanical tests (i.e., peel test, pull-off test, etc.). Despite the large difference in magnitude, there exists evidence in the literature supporting the use of the bond energy to characterize the resistance of composite systems to cohesive and/or adhesive failures. If the bond energy is to be recognized as a useful screening tool by the paving industry, the relationship between the bond energy and total work of fracture needs to be understood and verified. The effect of different types of modifications (addition of polymers, addition of anti-strip agents, and aging) on the surface free energy components of various asphalt binders was explored in order to understand how changes in the surface free energy components are related to the performance of the asphalt mixtures. After the asphalt binder-aggregate combination was explored, the next step was to study how the surface free energy of water was affected by contact with the asphalt binder-aggregate interface. Aggregates, which have a pH of greater than seven, will cause the pH of water that contacts them to increase. A change in the pH of the contacting water could indicate a change in its overall surface free energy, which might subsequently increase or decrease the water's moisture damage potential. With surface free energy fully explored, the total work of fracture was measured using pull-off tests for asphalt binder-aggregate combinations with known surface free energy components. In order to fully explore the relationship between bond energy and total work of fracture, temperature, loading rate, specimen geometry, and moisture content were varied in the experiments. The results of this work found that modifications made to the asphalt binder can have significant positive or negative effects on its surface free energy components and bond energy. Moreover, the results from the pull-off tests demonstrated that a relationship exists between bond energy (from surface free energy) and total work of fracture (from pull-off tests), and that surface free energy can be used to estimate the performance of asphalt binder-aggregate combinations.
5

Étude, modélisation et mesure des forces d'adhésion à l'échelle microscopique.

Alvo, Sébastien 25 October 2012 (has links) (PDF)
La manipulation d'objets de tailles microscopiques, dont le comportement est régi par des effets de surfaces, nécessite des modèles d'interaction fiables entre les micro-objets et les organes terminaux des robots. De nombreux paramètres entrent en considération dans la modélisation des forces d'adhésion. Il apparaît donc nécessaire de déterminer l'influence de chacun afin de maîtriser en particulier la force à exercer pour séparer deux objets en contact dite force de pull-off. De plus, à l'échelle microscopique, la mesure des efforts d'interaction au cours de la manipulation est complexe et n'est possible que dans certains cas particuliers. L'approche générale proposée dans ce manuscrit repose sur trois étapes. Après une présentation du contexte de ces travaux, la première étape consiste à identifier les modèles et les moyens de mesure de la littérature (chapitre 1). Deux approches sont alors mises en avant pour modéliser les forces de pull-off. Les forces et les faiblesses des modèles sont étudiées plus en détail au chapitre 2 afin de développer, au cours de la seconde étape, un nouveau modèle de force d'adhésion (chapitre 3). Ce dernier met en avant le couplage entre les déformations et les forces d'adhésion et révèle des différences majeures entre les échelles microscopique et nanoscopique. Enfin, l'objectif de la troisième étape est de corréler ce modèle avec des observations expérimentales. L'analyse des résultats expérimentaux effectuée au chapitre 4 montre la difficulté de modéliser des interactions entre des micro-objets réels et met en avant un effet d'échelle s'appliquant aux forces électrostatiques.
6

Laser Based Pre-treatment of Secondary Bonded Composite T-joints for Improved Energy Dissipation

Hashem, Mjed H. 06 April 2021 (has links)
This study demonstrates an experimental investigation into the efficacy of a novel surface pre-treatment technique to improve the toughness and energy dissipation of composite CFRP T-joints. This novel technique optimizes CO2 laser irradiations to remove surface contaminations and modify the surface morphology of CFRP T-joint adherents. Pull-off tests were performed on T-joints that experienced peel-ply (PP) treatment and to those that were ablated with 10% (LC) and 30% (LA) laser power respectively. A further developed alternative pattern between LA and LC surface pre-treatment was examined. Two different quasi-isotropic stacking sequences have been studied by having surface fibers aligned in 0° and 45° direction. A series of surface roughness analysis, optical microscopy, SEM, CT scan and pictorial findings have been carried out to characterize the surface morphologies and failure modes prior to and after the failure. The patterning technique promoted non-local damage mechanisms which resulted in large improvements in the toughness and energy dissipation as compared to the other pre-treatment techniques. Up to ~12 times higher energy dissipation compared to peel-ply pre-treated T-joint were achieved with patterned T-joint structures that are stacked with a 0° surface fiber direction.
7

Laboratory and Field Characterization of Micro-surfacing Mix Bond Strength

Talha, Sk Abu 23 September 2019 (has links)
No description available.
8

Evaluating CFRP-Masonry Bond Using Thermal Imaging

Ross, Joseph Christopher 01 January 2013 (has links)
This study presents results from non-destructive testing to evaluate the degradation of the CFRP-masonry bond using thermal imaging. The goal of the research was to identify locations where there was evidence of bond deterioration that could subsequently be verified through destructive pull-off testing. Four full-scale masonry walls were built outdoors at the University of South Florida in 1995 to evaluate the effectiveness of CFRP for repairing settlement damage. Two of the settlement-damaged walls were repaired using single layer, commercially available unidirectional CFRP systems that used Tonen (wall 3) and Henkel (wall 2) epoxies. These two walls were the subject of this investigation. Before non-destructive tests were initiated, historical site data on temperature, humidity and rainfall variation was compiled. Over seventeen years, the walls experienced ambient temperatures as high as 98°F and as low as 25°F. The average rainfall in Tampa is about 34 inches and the annual average high humidity is around 87%#37;. Because of the high temperature and humidity, the CFRP-masonry bond was exposed to a particularly aggressive environment. Three types of thermal evaluation were carried out: thermocouple monitoring and both passive (solar) and active (localized heating) infrared thermal imaging. Twenty-four thermocouples were used to observe the spatial variations in temperature on the wall. Data showed that the surface temperatures of the wall are uneven with one end being hotter than the other. Measurements indicated that the wall temperatures went as high as 103°F during the week of data collection in late March and early April of 2012. In contrast, the highest ambient temperature over the same period was 92°F. The high temperature experienced by the wall is below the glass transition temperature for the epoxies, which ranges from 140°F to 180°F. A FLIR Tau 320 thermal imaging camera was used to identify localized de-bonding. Solar radiation heated the walls and the goal of thermal imaging was to detect hot spots which are indicative of de-bonding. Although this technique is ideal for exterior applications, initial attempts were unsuccessful. Once de-bonds were located by sounding, the camera was capable of confirming two hot spots on wall 2. A thermal scanner built by the university from a series of ten Omega OS137 thermal sensors was used to obtain more complete thermal images of the walls. This scanner had a heating element which supplied heat and allowed for active thermography. The scanner detected 16 hot spots not seen with the thermal camera. Ten of the twelve spots on wall 2 are concentrated on a region of the wall which experienced the highest daily changes in temperature, which indicates that higher thermal and environmental cycling has caused greater de-bond. Based on the number of hot spots found using both active and passive thermography the Tonen epoxy is performing better than the Henkel epoxy. In general, the bond has endured; however, there are a few localized areas that have de-bonded. Pull-off tests are recommended on walls 2 and 3. Five locations in regions suspected to have poor bond and five locations in regions suspected to have good bond are identified for each wall.
9

NANOPARTICLE FLOTATION COLLECTORS

Yang, Songtao 04 1900 (has links)
<p>Flotation is a critical operation in the isolation of valuable minerals from natural ore. Before flotation, chemical collectors are routinely added to ground ore slurries. Collectors selectively bind to mineral-rich particles, increasing their hydrophobicity thus promoting selective flotation. Conventional collectors are small surfactants with a short hydrocarbon tail (2-6 carbons) and a head group, such as xanthate. In this work, much larger hydrophobic polystyrene nanoparticles are evaluated as potential flotation collectors. Experiments involving both clean model mineral suspensions and complex ultramafic nickel ores confirm that conventional water-soluble molecular collectors could be partially or completely replaced by colloidal hydrophobic nanoparticle flotation collectors.</p> <p>The ability of nanoparticles to induce flotation has been demonstrated by floating hydrophilic, negatively charged glass beads with cationic polystyrene nanoparticle collectors. Mechanisms and key parameters such as nanoparticle hydrophobicity and nanoparticle adsorption density have been identified. Electrostatic attraction promotes the spontaneous deposition of the nanoparticles on the glass surfaces raising the effective contact angle to facilitate the adhesion of beads to air bubbles. The pull-off force required to detach a glass sphere from the air/water interface of a bubble into the water was measured by micromechanics. Coating with nanoparticles allows the beads to attach remarkably firmly on the air bubble. As little as 10% coverage of the bead surfaces with the most effective nanoparticles could promote high flotation efficiencies, whereas conventional molecular collector requires 25% or higher coverage for a good recovery. Contact angle measurements of modified glass surfaces with a series of nanoparticles that covered a range of surface energies were used to correlate the nanoparticle surface properties with their ability to promote flotation of glass beads. Factors influencing nanoparticle deposition on glass, such as nanoparticle dosage, nanoparticle size, conditioning time have been investigated with a quartz crystal microbalance (QCM). Deposition kinetics has been analyzed according to Langmuir kinetics model.</p> <p>Surface functionalized nanoparticles enhance the ability of nanoparticle collectors to selectively deposit onto surfaces of the desired mineral particles in the presence of gangue materials. Poly (styrene-co-vinylimidazole) based nanoparticle collectors have been developed to selectively deposit onto nickel mineral (pentlandite) in the presence of Mg/Si slime. Flotation tests of ultramafic nickel ores with these nanoparticle collectors have shown improvements in both pentlandite recovery and selectivity.</p> / Doctor of Philosophy (PhD)
10

Assemblage de microsystèmes 3D reconfigurables par contrôle en force : application aux MOEMS hybrides.

Rabenorosoa, Kanty 25 November 2010 (has links) (PDF)
La thèse propose un concept de microbancs optiques reconfigurables (MOEMS 3D hybrides) à base d'éléments microfabriqués et assemblés à l'aide d'une station robotique : ces nouveaux bancs optiques combinent les avantages du micro-assemblage robotique et des techniques de microfabrication sur silicium. Le positionnement fin des supports optiques sur un substrat s'effectue par une tâche de guidage. La réalisation d'une telle tâche à l'échelle micrométrique est une contribution majeure de la thèse. Elle a nécessité plusieurs avancées. L'absence de modèles fiables et de mesures disponibles pour des contacts plan/plan, un type de contact très fréquent en micro-assemblage, nous a conduit au développement d'un banc de mesure robotisé pour évaluer la force de pull-off. Ensuite, un système robotique équipé de préhenseur à deux doigts de serrage instrumentés a été mis en oeuvre pour mesurer simultanément la force de serrage et la force de contact latéral qui agit sur le micro-objet manipulé durant le guidage. Un modèle de l'évolution de la force de serrage lors de l'apparition de la force de contact latéral est présenté et confronté à une modélisation par éléments finis ainsi qu'à des résultats expérimentaux. Enfin, une stratégie de guidage est établie en prenant en compte la stabilité de la saisie et les spécificités du micromonde. Une commande hybride force/position est choisie pour automatiser le guidage par deux doigts instrumentés (GDDI). Elle a été mise en oeuvre avec succès sur un système robotique.

Page generated in 0.0254 seconds