Spelling suggestions: "subject:"purkinje cell"" "subject:"purkinjie cell""
11 |
Acid-Sensing Ion Channels: Regulation And Physiologic FunctionCho, Jun-Hyeong 19 March 2008 (has links)
No description available.
|
12 |
Diferenciação de células-tronco embrionárias murinas (mESCs) em células produtoras de insulina (IPCs) e caracterização funcional do gene Purkinje cell protein 4 (Pcp4) neste processo / Differentiation of murine embryonic stem cells (mESCs) into insulin-producing cells (IPCs) and functional characterization of the Purkinje Cell Protein 4 (Pcp4) gene in this processKossugue, Patricia Mayumi 28 May 2013 (has links)
Fontes alternativas de células β têm sido estudadas para o tratamento de Diabetes mellitus tipo 1, dentre as quais a mais promissora consiste das células-tronco diferenciadas em células produtoras de insulina (IPCs). Alguns trabalhos demonstram a capacidade de células-tronco embrionárias murinas (mESCs) de formarem estruturas semelhantes a ilhotas pancreáticas, porém, os níveis de produção de insulina são insuficientes para a reversão do diabetes em camundongos diabetizados. Este trabalho visa desenvolver um protocolo adequado para geração de IPCs e contribuir para a identificação e caracterização funcional de novos genes associados à organogênese pancreática. Logo no início da diferenciação das mESCs em IPCs, foi possível verificar o surgimento de células progenitoras, evidenciado pela expressão de marcadores importantes da diferenciação beta-pancreática. Ao final do processo de diferenciação in vitro, ocorreu a formação de agrupamentos (clusters) semelhantes a ilhotas, corando positivamente por ditizona, que é específica para células β-pancreáticas. Para avaliar seu potencial in vivo, estes clusters foram microencapsulados em Biodritina® e transplantados em camundongos diabetizados. Apesar dos níveis de insulina produzidos não serem suficientes para estabelecer a normoglicemia, os animais tratados com IPCs apresentaram melhores condições, quando comparados ao grupo controle, tendo melhor controle glicêmico, ganho de massa corpórea e melhor aparência da pelagem, na ausência de apatia. Além disso, análise dos clusters transplantados nestes animais indicou aumento da expressão de genes relacionados à maturação das células β. Porém, quando estes clusters foram microencapsuladas em Bioprotect® e submetidos à maturação in vivo em animais normais, ocorreu um aumento drástico na expressão de todos os genes analisados, indicando sua maturação completa em células beta. O transplante destas células completamente maturadas em animais diabetizados, tornou-os normoglicêmicos e capazes de responder ao teste de tolerância à glicose (OGTT) de forma semelhante aos animais normais. A segunda parte do trabalho visou analisar genes diferencialmente expressos identificados em estudo anterior do nosso grupo, comparando, através de DNA microarray, mESCs indiferenciadas e diferenciadas em IPCs. Um dos genes diferencialmente expressos é aquele que codifica para a Purkinge cell protein 4 (Pcp4), sendo 3.700 vezes mais expresso em IPCs. Para investigar o possível papel do gene Pcp4 em células β e no processo de diferenciação β-pancreática, adotou-se o enfoque de genômica funcional, superexpressando e inibindo sua expressão em células MIN-6 e mESCs. Apesar da alteração na expressão de Pcp4 em células MIN-6 não ter interferido de forma expressiva na expressão dos genes analisados, quando inibido, modificou o perfil da curva de crescimento celular, aumentando seu tempo de dobramento de forma significativa e diminuindo da viabilidade celular em ensaios de indução de apoptose. Já na diferenciação de mESCs em IPCs, a superexpressão de Pcp4 interferiu de forma positiva apresentando uma tendência a aumentar a expressão dos genes relacionado à diferenciaçãoβ-pancreática. Concluindo, desenvolvemos um novo protocolo de diferenciação de mESCs em IPCs as quais foram capazes de reverter o diabetes em camundongos diabetizados e descrevemos, pela primeira vez, o gene Pcp4 como sendo expresso em células β-pancreáticas, podendo estar relacionado à manutenção da viabilidade celular e maturação destas células. / New cellular sources for type 1 Diabetes mellitus treatment have been previously investigated, the most promising of which seems to be the insulin producing cells (IPCs), obtained by stem cells differentiation. Some reports show that murine embryonic stem cells (mESCs) are able to form islet-like structures, however, their insulin production is insufficient to render diabetic mice normoglycemic. This work aims at developing an adequate protocol for generation of IPCs and searching for new genes which could be involved in the pancreatic organogenesis process. Early on during mESCs differentiation into IPCs, we observed the presence of progenitor cells, which were able to express pancreatic β-cell markers. At the end of the differentiation process, the islet-like clusters positively stained for the insulin-specific dithizone. These clusters were microencapsulated in Biodritin® microcapsules, and then transplanted into diabetized mice. Although the levels of insulin production were insufficient for the animals to achieve normoglycemia, those which received IPCs displayed improved conditions, when compared to the control group, as judged by a better glycemic control, body weight gain and healthy fur appearance, in the absence of apathy. In addition, when these transplantated clusters were retrieved, high levels of expression of the genes related to β-cell maturation were detected. IPCs were also microencapsulated in Bioprotect® and subjected to in vivo maturation in normal animals. A dramatic increase of the analyzed genes expression was observed, indicating complete maturation of the differentiated cells. When these cells were transplanted into diabetized mice, these animals achieved normoglycemia and were able to display glucose tolerance test (OGTT) response very similar to that of normal mice. In the second part of this work, we analyzed upregulated genes described in previous work from our group, comparing undifferentiated mESCs to IPCs using a microarray platform. One of these genes is that coding for the Purkinje cell protein 4 (Pcp4), which is 3,700 more expressed than in undifferentiated mESC cells. We adopted a functional genomics approach to investigate the role played by the Pcp4 gene in β-cells and in β-cell differentiation, by inducing overexpression and knocking down this gene in MIN-6 and mESC cells. Although the differential expression of Pcp4 in MIN-6 was not able to interfere with the expression of the genes analyzed, we observed different cell growth rates, with increased doubling time and decreased cell viability when its expression was knocked down. In addition, overexpression of Pcp4 in mESCs subjected to differentiation into IPCs apparently increases the expression of genes related to β-cell differentiation. In conclusion, we developed a new protocol for ESCs differentiation into IPCs, which is able to revert diabetes in diabetized mice, and we also describe here, for the first time, the Pcp4 gene as being expressed in pancreatic β-cells and possibly being related to maintenance of cell viability and β-cell maturation.
|
13 |
Diferenciação de células-tronco embrionárias murinas (mESCs) em células produtoras de insulina (IPCs) e caracterização funcional do gene Purkinje cell protein 4 (Pcp4) neste processo / Differentiation of murine embryonic stem cells (mESCs) into insulin-producing cells (IPCs) and functional characterization of the Purkinje Cell Protein 4 (Pcp4) gene in this processPatricia Mayumi Kossugue 28 May 2013 (has links)
Fontes alternativas de células β têm sido estudadas para o tratamento de Diabetes mellitus tipo 1, dentre as quais a mais promissora consiste das células-tronco diferenciadas em células produtoras de insulina (IPCs). Alguns trabalhos demonstram a capacidade de células-tronco embrionárias murinas (mESCs) de formarem estruturas semelhantes a ilhotas pancreáticas, porém, os níveis de produção de insulina são insuficientes para a reversão do diabetes em camundongos diabetizados. Este trabalho visa desenvolver um protocolo adequado para geração de IPCs e contribuir para a identificação e caracterização funcional de novos genes associados à organogênese pancreática. Logo no início da diferenciação das mESCs em IPCs, foi possível verificar o surgimento de células progenitoras, evidenciado pela expressão de marcadores importantes da diferenciação beta-pancreática. Ao final do processo de diferenciação in vitro, ocorreu a formação de agrupamentos (clusters) semelhantes a ilhotas, corando positivamente por ditizona, que é específica para células β-pancreáticas. Para avaliar seu potencial in vivo, estes clusters foram microencapsulados em Biodritina® e transplantados em camundongos diabetizados. Apesar dos níveis de insulina produzidos não serem suficientes para estabelecer a normoglicemia, os animais tratados com IPCs apresentaram melhores condições, quando comparados ao grupo controle, tendo melhor controle glicêmico, ganho de massa corpórea e melhor aparência da pelagem, na ausência de apatia. Além disso, análise dos clusters transplantados nestes animais indicou aumento da expressão de genes relacionados à maturação das células β. Porém, quando estes clusters foram microencapsuladas em Bioprotect® e submetidos à maturação in vivo em animais normais, ocorreu um aumento drástico na expressão de todos os genes analisados, indicando sua maturação completa em células beta. O transplante destas células completamente maturadas em animais diabetizados, tornou-os normoglicêmicos e capazes de responder ao teste de tolerância à glicose (OGTT) de forma semelhante aos animais normais. A segunda parte do trabalho visou analisar genes diferencialmente expressos identificados em estudo anterior do nosso grupo, comparando, através de DNA microarray, mESCs indiferenciadas e diferenciadas em IPCs. Um dos genes diferencialmente expressos é aquele que codifica para a Purkinge cell protein 4 (Pcp4), sendo 3.700 vezes mais expresso em IPCs. Para investigar o possível papel do gene Pcp4 em células β e no processo de diferenciação β-pancreática, adotou-se o enfoque de genômica funcional, superexpressando e inibindo sua expressão em células MIN-6 e mESCs. Apesar da alteração na expressão de Pcp4 em células MIN-6 não ter interferido de forma expressiva na expressão dos genes analisados, quando inibido, modificou o perfil da curva de crescimento celular, aumentando seu tempo de dobramento de forma significativa e diminuindo da viabilidade celular em ensaios de indução de apoptose. Já na diferenciação de mESCs em IPCs, a superexpressão de Pcp4 interferiu de forma positiva apresentando uma tendência a aumentar a expressão dos genes relacionado à diferenciaçãoβ-pancreática. Concluindo, desenvolvemos um novo protocolo de diferenciação de mESCs em IPCs as quais foram capazes de reverter o diabetes em camundongos diabetizados e descrevemos, pela primeira vez, o gene Pcp4 como sendo expresso em células β-pancreáticas, podendo estar relacionado à manutenção da viabilidade celular e maturação destas células. / New cellular sources for type 1 Diabetes mellitus treatment have been previously investigated, the most promising of which seems to be the insulin producing cells (IPCs), obtained by stem cells differentiation. Some reports show that murine embryonic stem cells (mESCs) are able to form islet-like structures, however, their insulin production is insufficient to render diabetic mice normoglycemic. This work aims at developing an adequate protocol for generation of IPCs and searching for new genes which could be involved in the pancreatic organogenesis process. Early on during mESCs differentiation into IPCs, we observed the presence of progenitor cells, which were able to express pancreatic β-cell markers. At the end of the differentiation process, the islet-like clusters positively stained for the insulin-specific dithizone. These clusters were microencapsulated in Biodritin® microcapsules, and then transplanted into diabetized mice. Although the levels of insulin production were insufficient for the animals to achieve normoglycemia, those which received IPCs displayed improved conditions, when compared to the control group, as judged by a better glycemic control, body weight gain and healthy fur appearance, in the absence of apathy. In addition, when these transplantated clusters were retrieved, high levels of expression of the genes related to β-cell maturation were detected. IPCs were also microencapsulated in Bioprotect® and subjected to in vivo maturation in normal animals. A dramatic increase of the analyzed genes expression was observed, indicating complete maturation of the differentiated cells. When these cells were transplanted into diabetized mice, these animals achieved normoglycemia and were able to display glucose tolerance test (OGTT) response very similar to that of normal mice. In the second part of this work, we analyzed upregulated genes described in previous work from our group, comparing undifferentiated mESCs to IPCs using a microarray platform. One of these genes is that coding for the Purkinje cell protein 4 (Pcp4), which is 3,700 more expressed than in undifferentiated mESC cells. We adopted a functional genomics approach to investigate the role played by the Pcp4 gene in β-cells and in β-cell differentiation, by inducing overexpression and knocking down this gene in MIN-6 and mESC cells. Although the differential expression of Pcp4 in MIN-6 was not able to interfere with the expression of the genes analyzed, we observed different cell growth rates, with increased doubling time and decreased cell viability when its expression was knocked down. In addition, overexpression of Pcp4 in mESCs subjected to differentiation into IPCs apparently increases the expression of genes related to β-cell differentiation. In conclusion, we developed a new protocol for ESCs differentiation into IPCs, which is able to revert diabetes in diabetized mice, and we also describe here, for the first time, the Pcp4 gene as being expressed in pancreatic β-cells and possibly being related to maintenance of cell viability and β-cell maturation.
|
14 |
Synaptic plasticity rule between parallel fibres and Purkinje cells in the cerebellum / Les règles de plasticité entre les fibres parallèles et les cellules de Purkinje du cerveletBouvier, Guy 08 September 2015 (has links)
La cellule de Purkinje (CP) est la seule sortie anatomique du cortex cérébelleux. Des études récentes ont montré que les récepteurs NMDA (NMDA-R) jouaient un rôle essentiel dans le Depression à long terme (DLT) à la synapse entre les fibres parallèles (FP) et les CPs. Les NMDA-Rs pourraient jouer un rôle prépondérant dans l’intégration des informations somato-sensorielles des FPs et ainsi contribuer au rôle du cervelet dans l'apprentissage moteur. Nous montrons que les NMDA-Rs sont fonctionnels et recrutés uniquement lors de patrons de décharges des FPs haute fréquences. Ces résultats étant potentiellement liés aux propriétés biophysiques des NMDA-Rs, nous avons démontré que la PLT dépend des NMDA-Rs comportant les sous unité GluN2A et que l'expression post synaptique de la plasticité s'effectuait à travers une diffusion anterograde du monoxyde d'azote (MA). De plus, nous avons confirmé et disséqué les propriétés de filtre passe haut des NMDA-Rs in vivo et in vitro.Nous avons montré que la PLT nécessitait des trains d'activité des FPs plus long que dans le cadre de la DLT, nous postulons que la quantité de MA produite est plus importante lors de l'induction de PLT. Utilisant nos données, nous avons implémenté un model mathématique de plasticité à la synapses FP-CP pouvant prédire le signe de plasticité synaptique selon les patrons d'activité rencontrés par cette synapse. / Synaptic plasticity is thought to be the cellular mechanism underlying learning and memory and has been the subject of intense experimental and theoretical research. The experimental work has led to detailed knowledge of the receptors and signalling pathways involved in the induction of different types of synaptic plasticity. In parallel, theoretical studies have built ’plasticity rules’, formal descriptions linking spike timings to changes in synaptic efficacy, such as the spike-timing-dependent plasticity (STDP) rule [Gerstner et al., 1996, Song et al., 2000]. However, these plasticity rules are generally quite abstract and their link to the underlying biophysical mechanisms is often unclear. The best known mechanisms in synaptic plasticity are linked to N-methyl-D-aspartate receptor (NMDA-R) function. NMDA-Rs are biophysical coincidence detectors of glutamate and membrane depolarization [Mayer et al., 1984, Nowak et al., 1984]. The activation of postsynaptic NMDA-Rs defines learning rules where the relative timing of pre- and post-synaptic activity is a key parameter [Debanne et al., 1994, Nevian and Sakmann, 2006, Sjostrom et al., 2003]. In the few cases where the participation of presynaptic NMDA-Rs has been proposed, these have invariably been involved in presynaptically-expressed LTD [Rodríguez-Moreno and Paulsen, 2008b, Sjostrom et al., 2003]. Cerebellar parallel fibre-Purkinje cell (PF–PC) synaptic plasticity follows non-Hebbian plasticity rules. We have previously reported that PF-PC LTD induction needs PF bursting activity (at least pairs of spikes) [Bidoret et al., 2009] and is linked to the presence of presynaptic NMDA-Rs [Casado et al., 2002b]. In this thesis, we set out to characterise the activity requirements for bidirectional synaptic plasticity in young and adult animals, and to investigate the signalling pathways involved. Surprisingly, we found that LTP induction shares many properties with LTD induction, including a similar frequency-dependence for presynaptic activity and an absolute requirement for NMDA-R activation and NO production. However, LTP requires a different source of post-synaptic calcium increase [Ly et al., 2013a]. In contrast with other synapses [Bender et al., 2006, Fino, 2010], our data indicate that both LTP and LTD share signalling mechanisms. These involve presynaptically produced NO and postsynaptic Ca rises. Supporting the notion that the frequency dependence of plasticity arises from the involvement of presynaptic NMDA-Rs, we provide the first direct evidence for Ca influx through presynaptic NMDA-Rs in PFs in young and adult animals, settling a long-lasting controversy [Bidoret et al., 2009, Casado et al., 2002a, Shin and Linden, 2005a, Wang et al., 2014a]. Based on our data, we propose a novel mechanistic plasticity rule. This deliberately parsimonious rule can be used to interpret and predict the plasticity arising from arbitrary patterns of PF and climbing fibre (CF) activity. Our results support the notion that bidirectional synaptic plasticity depends on multi-spike activity patterns in an intricate fashion [Bidoret et al., 2009, Froemke and Dan, 2002, Pfister and Gerstner, 2006, Sjöström et al., 2001].
|
15 |
Noradrenergic Fiber Sprouting in the CerebellumKostrzewa, Richard M., Harston, Craig T., Fukushima, Hideki, Brus, Ryszard 01 January 1982 (has links)
In order to attain a better understanding of the sprouting response of noradrenergic fibers in the central nervous system (CNS), noradrenergic innervation to the cerebellum was observed by the glyoxylic acid method after a variety of manipulations and in a genetic variant of mouse classified as "Purkinje cell degeneration" (pcd/pcd). It has been found that a midbrain lesion in rats at birth will result in a collateral sprouting response of noradrenergic fibers in the cerebellum at 8 weeks, as indicated by the increased number of histofluorescent fibers observed in the molecular layer of the cerebellar cortex. Another procedure, treatment of neonatal rats with nerve growth factor alone appears to produce a temporary stimulation of noradrenergic fiber growth in the cerebellum, as observed by the histofluorescent method, although the innervation at 6 weeks or later is ultimately unchanged from the control group. In contrast, NGF (500 units) given to rats in combination with 6-hydroxydopa (6-OHDOPA) (60 μg/g IP) at 3 days postbirth produces a hyperinnervation of the cerebellum by noradrenergic fibers by 2 weeks of age and until at least 8 weeks of age. A third procedure, locus coeruleus implantation, was generally unsuccessful using the procedures described, since the implant was usually non-viable after several days. In a few instances where histofluorescent nuclei were found within the implant, there was an abundance of histofluorescent fibers within and adjacent to the implant, with fibers appearing to grow into host cerebellum. In the final procedure, it was noted that the density of noradrenergic input to the molecular layer of the cerebellar cortex was markedly increased in a genetic mutant mouse, classified as "Purkinje cell degeneration" (pcd/pcd), which is characterized by the absence of Purkinje cells of the cerebellum in adulthood. However, because of the tissue shrinkage that occurs after loss of Purkinje cells during postnatal development, it is unclear as to whether this observation represents hyperinnervation or a normal complement of fibers in a smaller brain space. The above procedures demonstrate the plasticity of noradrenergic fibers in neonatal cerebellum, a brain region that undergoes considerable postnatal development. The cerebellum is thought to be a good site for studying development/ regeneration/sprouting of noradrenergic fibers in particular, and central axonal processes in general.
|
16 |
A comparative analysis of Purkinje cells across species combining modelling, machine learning and information theoryKidd, Kirsty January 2017 (has links)
There have been a number of computational modelling studies that aim to replicate the cerebellar Purkinje cell, though these typically use the morphology of rodent cells. While many species, including rodents, display intricate dendritic branching, it is not a universal feature among Purkinje cells. This study uses morphological reconstructions of 24 Purkinje cells from seven species to explore the changes that occur to the cell through evolution and examine whether this has an effect on the processing capacity of the cell. This is achieved by combining several modes of study in order to gain a comprehensive overview of the variations between the cells in both morphology and behaviour. Passive and active computational models of the cells were created, using the same electrophysiological parameters and ion channels for all models, to characterise the voltage attenuation and electrophysiological behaviour of the cells. These results and several measures of branching and size were then used to look for clusters in the data set using machine learning techniques. They were also used to visualise the differences within each species group. Information theory methods were also employed to compare the estimated information transfer from input to output across each cell. Along with a literature review into what is known about Purkinje cells and the cerebellum across the phylogenetic tree, these results show that while there are some obvious differences in morphology, the variation within species groups in electrophysiological behaviour is often as high as between them. This suggests that morphological changes may occur in order to conserve behaviour in the face of other changes to the cerebellum.
|
17 |
Spatial and temporal integration of granular inputs in the cerebellar cortex / Intégration spatiale et temporelle des entrées granulaires dans le cortex cérébelleuxValera, Antoine 28 November 2013 (has links)
En utilisant des enregistrements en patch-clamp sur des tranches aigues de cervelet de rat, j'ai observé que les informations à haute fréquence traitées dans la voie fibre moussues (FM)-cellules granulaires (CG) sont conservées à la synapse CG-cellule de Purkinje (CP). Des trains de potentiels d'action évoquent des courants postsynaptiques excitateurs importants, même à haute fréquence, avec une haute probabilité de libération initiale, une forte facilitation jusqu'à 700Hz, et ceci de façon soutenue. Ce mécanisme est possible grâce au recrutement de vésicules initialement réfractaires. Une seconde étude utilisant du decageage de Rubi-Glutamate sur les CG a permis de révéler une organisation spatialeprécise des connexions CG-PC, CG-Interneurones de la couche moléculaire (ICM) et CG-Cellules de Golgi (CGo). Des groupes spécifiques de CP/CGo ou ICM, identifiables via des marqueurs histochimiques sont contacté par des populations spécifiques de CG. / Using whole cell patch clamp recording in rat cerebellum acute slices, I found that high frequency information processed in mossy fibre (MF)-granule cell (GC) pathway is conseved at the GC-Purkinje cell (PC) synapse. Bursts of action potential could evoke strong, excitatory postsynaptic currents at the PC soma that can follow high frequency rates, with high initial release probability, paired-pulse facilitation up to 700 Hz, and sustained facilitation during tensof pulses. This fast and sustained release is possible during bursts through the recruitment of reluctant vesicles that boost vesicular release. In a second study, by using precise RuBi-Glutamate uncaging onto granule cells, and by recording either PC, molecular layer interneurons or Golgi cells, 1 found that in the anterior vermis of the mouse cerebellum, GC-PC connection follows a precise spatial organisation. Specifie sets of PC, that can be identified using histochemical markers, receive inputs from small GC hotspots.
|
18 |
Entwicklungsabhängiger Übergang der Kopplungsdistanz an der Parallelfaser-PurkinjezellsynapseBaur, David 16 July 2018 (has links)
No description available.
|
19 |
Elucidating the reversibility of ataxiaŠuminaite, Daumante January 2017 (has links)
Heterozygous and recently identified homozygous mutations in the SPTBN2 gene, encoding b-III spectrin, are implicated in spinocerebellar ataxia type 5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type 1 (SPARCA1), respectively. Our mouse model, lacking b-III spectrin (KO), mimics the progressive human phenotype displaying motor deficiencies as well as reduced Purkinje cell firing frequency followed by dendritic tree degeneration and cell death. The aims of this study were to evaluate progression of Purkinje cell degeneration following loss of b-III spectrin function and determine whether the reintroduction of C-terminus (C-trm) of b-III spectrin to the cerebellum is enough to halt, alleviate or reverse the disease phenotype. Additionally, this study investigated whether the abnormal electrophysiological and morphological phenotypes of Purkinje cells from KO mice are re-capitulated in a primary cerebellar culture and if so, whether they could be rescued by modulating calcium signaling. Morphological and histological analyses revealed that Purkinje cell degeneration is not uniform throughout the cerebellum of KO mice with Purkinje cells from posterior cerebellar regions possessing significantly smaller dendritic trees when compared to anterior cerebellum (p=0.0003, N=4-6, n=11-29). Similarly, significant reduction in Purkinje cell density was observed in posterior, not anterior regions of KO mice when compared to WT animals (p=0.014, N=3) and reduced tonic firing is most significant in Purkinje cells from the posterior cerebellum compared to WT mice (p=0.0328, N=3-6, n=11-29), with posterior KO PCs appearing to have elevated input resistance. Two-week expression of C-trm b-III spectrin in 3-month old KO animals significantly reduced Purkinje cell input resistance when compared to non-transduced cells (p=0.0139, N=4-5, n=15), but no effect was seen 9 months after viral injection. In contrast, a difference in cell surface area was no longer detected between WT and KO animals at 12 months of age following 9-months of viral expression. Nevertheless, using the elevated beam test motor deterioration was still observed 5 months after surgery (p=0.0023, N=4). In contrast, earlier stereotaxic injections at 6-weeks of age had a positive effect on mice motor performance with no deterioration in performance detected 5 months after the surgery. Latency to stay on the rotarod at 3 rpm was also significantly extended 6 months after stereotaxic injections at 6-weeks of age with slower motor deterioration (p=0.0348, N=6). In primary cerebellar cultures, Purkinje cells from KO animals exhibit an abnormal morphology with significantly more dendritic branches (p < 0.0001, N=4-7, n=35-69) and a larger total dendritic length (p=0.0079). Chronic application of 2 μM mibefradil, a T-type calcium channel blocker, was observed to reduce total dendritic length and branching in KO animal cultures bringing these morphological measurements closer to WT Purkinje cell levels. Finally although after 14 days in vitro 40% of Purkinje cells were found to be spontaneously firing, no significant difference in firing frequency (p=0.9434) or input resistance (p=0.8434, N=4, n=6-10) was detectable between WT and KO cultures. In summary, Purkinje cells in posterior cerebellar regions of KO mice were found to be more susceptible to dendritic degeneration and cellular death than cells in the anterior cerebellum. Expression of C-trm b-III spectrin at 3 months of age had an immediate effect on cell input resistance and a modest effect on Purkinje cell morphology but no effect on motor decline. Viral injections at 6-weeks of age, however, significantly slowed motor decline. Although an abnormal KO cell morphology could be successfully recapitulated in primary cell culture, it was not possible to discern any differences in electrophysiological properties. Nevertheless, the abnormal cell morphology was successfully modified in vitro by manipulating calcium signaling via T-type calcium channels.
|
20 |
Development and plasticity of Purkinje cell connections / Développement et plasticité des connexions des cellules de PurkinjeAdy, Visou 19 November 2013 (has links)
Le cervelet est un petit cerveau dans le cerveau. Il contient plus de la moitié du nombre total de neurones du cerveau. Sa structure très régulière est bien connue, toutefois son rôle demeure mystérieux. Le développement essentiellement postnatal du cervelet chez les rongeurs permet d’y étudier la formation activité-dépendante du réseau de neurones. C’est aussi le siège où s’opèrent diverses formes de plasticité synaptique, ce qui en fait un modèle d’étude idéal pour la plasticité synaptique développementale et adulte. Au cours de cette thèse, à l’aide d’enregistrements électophysiologiques en patch-clamp et en extracellulaire sur des tranches aigües de cervelet de souris et grâce aux techniques immunohistochimiques, j’ai étudié trois acteurs importants de la plasticité synaptique et du développement des cellules de Purkinje, les neurones centraux du cortex cérébelleux. Nous avons démontré que l’activation du récepteur métabotropique glutamatergique de type 1 (mGlu1) déclenche l’activation et l’ouverture de GluD2, un récepteur nécessaire au développement et à la plasticité des synapse des cellules de Purkinje (CPs). Nous avons également mis en évidence que les Pannexines 1, des canaux potentiellement impliqué dans la synchronisation neuronale récemment découverts et encore mal caractérisés, sont exprimées par les cellules de Purkinje Zebrine II –immunopositives, suivant les bandes parasagittales que délimitent les microdomaines du cervelet. Enfin, nous avons étudié la physiologie du cortex cérébelleux des souris néonatales, cherchant à caractériser les différents acteurs essentiels à l’activité neuronale de ce cortex en développement très particulier et peu étudié. L’activation du récepteur GluD2 médiée par mGlu1 dans la synapse entre Fibre Parallèle et cellule de Purkinje (synapse PF-PC). GluD2 est classifié parmi les récepteurs ionotropiques glutamatergique, pourtant aucun ligand n’est capable d’induire l’ouverture de son canal. Nous avons identifié pour la première fois un mécanisme physiologique d’ouverture du canal de GluD2 en démontrant que l’activation de mGlu1 déclenche l’ouverture du canal de GluD2 pour une voie intracellulaire, aussi bien dans un système d’expression en culture que dans les tranches aigues de cervelet murin. Cela nous permettra d’étudier la contribution du courant médié à travers GluD2 dans la plasticité à long terme, avec des perspectives totalement nouvelles. L’expression de Pannexine 1 par les CPs se superpose aux stries Zebrine II- immunopositives du cervelet. Les CPs adultes constituent une population hétérogènes, les différents sous-types étant organisés sur le plan parasagittal. Nous avons montré que l’expression des protéines Pannexine 1 (Panx1) We have shown that Pannexin1 (Panx1) déssine un gradient rostrocaudal discontinu dans les lobules de tranches parasagittales. Sur les coupes coronales, leur distribution forme une série de bandes parasagittales. Les canaux Panx1 médient la libération d’ATP en réponse à divers stimuli et pourrais de cette façon contribuer à une activité neuronale orientée sur le plan parasagittal en réponse aux signaux des fibres parallèles. Caractérisation de l’activité GABAergique des CPs immatures dans les souris néonatales. Le cortex cérébelleux entre les jours postnataux P0 et P4 consistent principalement en une multicouche dense de CPs fortement interconnectées. A cet âge, les CPs sont remplies de GABA extrasynapstique qui est libéré dans le milieu extracellulaire par un mécanisme qui n’est pas clairement identifié. Nos recherches préliminaires sur la première semaine de développment postnatal, nous montrons que l’activation de récepteur au GABA de type A induit une réponse excitatrice chez les CPs. Avec notre préparation, cet effet est indépendant de la présence de corps cétoniques ou de lactate comme substrats énergétiques dans le milieu extracellulaire. (...) / The cerebellum is a little brain in the brain. It houses more than half the total number of neurons in the brain. Its crystalline structure is very well known but, still, its function remain unclear to date. Its mainly postnatal development in rodents allows the study of the physiology of activity-dependent neuronal wiring. It is also the place of many types of neuronal plasticity, making it an ideal model to study both developmental and adult synaptic plasticity. In this thesis, using mainly patch-clamp and extracellular recordings in cerebellar slices as well as immunohistochemistry in mice, I have studied three important actors of synaptic plasticity and development in the Purkinje cells, the principal neurons of the cerebellar cortex. We have established that the type 1metabotropic glutamate receptor (mGlu1) triggers the gating of GluD2, a receptor necessary for Purkinje cells (PCs) synapses development and synaptic plasticity. We have also shown that the Pannexins 1, some channels likely involved in neuronal synchronization that have been recently discovered but yet remain poorly characterized, are expressed by Zebrin II immmunopositive Purkinje cells in the classical Zebra stripes formed by microdomains of the cerebellum. Last, we have studied the physiology of the primitive cerebellar cortex in neonatal mice, establishing the first elements of the neuronal activity of this very particular developing cortex at a stage still very poorly characterized. The mGlu1-mediated gating of Glu2D receptors at Parallel Fiber to PC (PF-PC) synapse. GluD2 are classified among ionotropic glutamate receptors, but no ligand has proved capable of gating their channel. We have identified for the first time a physiological mechanism of gating GluD2 channels by demonstrating that the activation of mGlu1 triggers the opening of GluD2 channels through intracellular pathways, both in expression systems and in acute murine cerebellar slices. This will allow us to study the contribution of GluD2-mediated current in long-term plasticity in a totally new way. Expression of Pannexin1 by PCs matches with adult Zebrin II immunopositive cerebellar stripes. Adult PCs constitute an heterogeneous population, the different subtypes being parasagittaly organized. We have shown that Pannexin1 (Panx1) proteins expression by PCs, draw a rostrocaudal discontinuous gradient in lobules of parasagittal slices. In transverse slices, their distribution forms an array of parasagittal stripes. Panx1 channels mediate ATP release in response to various stimuli and may in this way contribute to parasagittally oriented response to PF inputs. Characterization of GABAergic activity of immature Purkinje cells of newborn mice. The cerebellar cortex during postnatal days P0 to P4 essentially consists in a dense multilayer and highly interconnected network of PCs. At this age, PCs are filled with extrasynaptic GABA which is released in the extracellular space by a mechanism that is not clear. In our preliminary investigation of first week postnatal development, we show that activation of GABA-A receptors leads to excitatory responses in PCs. In our preparation, this effect is independent of the presence of keton bodies or lactate as energetic substrates in the extracellular medium. The complete inhibition of spontaneous discharge of PCs by Panx1 channel blockers, suggests that they mediate ion fluxes or release of neuromediators, such as ATP or GABA.
|
Page generated in 0.0488 seconds