• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 23
  • 10
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigating Cold Hardiness and Management Practices of Warm-season Putting Green Species in the Transition Zone

Kauffman, John M 01 August 2010 (has links)
Warm-season turf species are becoming increasingly popular for putting green use in the transition zone. Ultradwarf bermudagrass (Cynodon dactylon (L.)  C. transvaalensis Burtt-Davy) is the prevalent warm-season putting green species, but seashore paspalum (Paspalum vaginatum Swartz) and ‘Diamond’ zoysiagrass [Zoysia matrella (L.) Merr.] may also be grown in the transition zone. Warm-season species are susceptible to winter injury and may require different management regimes than cool-season species. Therefore, the objectives of this research were to assess the impacts of various management practices on warm-season putting green species and characterize the physiological basis for differences in freeze tolerance of various warm-season putting green species. Field studies determined sampling procedures form thatch-mat depth and soil organic matter content of warm-season putting greens and assessed the impact of various management practices on different warm-season putting green species/varieties. The relative freeze tolerance of ‘Champion’ and ‘TifEagle’ ultradwarf bermudagrass cultivars, ‘SeaDwarf’ seashore paspalum, and Diamond zoysiagrass were determined, along with the accumulation of proline and polyamines during cold acclimation, in growth chamber studies. All species/varieties required different sampling numbers for determination of thatch-mat depth and soil organic matter. More sand was incorporated into the turf canopy and surface hardness was increased with brushing and vibratory rolling TifEagle putting greens after sand topdressing application than either treatment alone. Putting green management programs with lower mowing heights and increased mowing frequencies increased ball roll distance on a MiniVerde putting green without negatively affecting turf quality. Weekly vertical mowing + daily grooming on TifEagle reduced thatch depth and turfgrass quality, while increasing topdressing incorporation over either treatment alone. Diamond was the most freeze tolerant species/variety, followed by TifEagle, Champion, then SeaDwarf. Cold acclimation increased proline concentration for all species/varieties except SeaDwarf, but had inconsistent effects on polyamines. Spermidine and putrescine concentrations differed with species/variety, but were not correlated to freeze tolerance.
32

Psykofysiologisk utvärdering av strategiträning och stresshantering inom golfputtning

Frid, Sebastian January 2015 (has links)
I föreliggande uppsats var syftet att i en mixad design med kontroll- och behandlingsgrupp, undersöka om psykofysiologisk strategiträning kan hjälpa individer att hantera stress samt förbättra sin prestationsförmåga i pressade situationer inom golfputtning. Strategiträningen innefattade en kombination av andning-, rörelse och kognitivt beteende. Resultatparametrar var a) fingertemperatur som indikerar förändringar i det sympatiska nervsystemet och b) ett protokoll som mätte prestationsdata. Data har analyserats med hjälp av ANOVA ”repeated measures” i SPSS.Huvudresultatet visar signifikant fingertemperaturskillnad mellan behandlings- och kontrollgruppen. Slutsatsen i denna studie är att denna intränade strategi sannolikt kan användas för att reducera risken att bli stressad i en pressad situation och därmed öka prestationseffektiviteten. / In the present study the aim was to investigate, in a mixed treatment- and control design, effects of a behavioral strategy on coping with stress in stressful situations and particularly golf putting. The behavioral strategy contented integrated breathing-, movement and cognitive behaviors. The outcome parameters were a) finger temperature indicating changes in the lymphatic nervous system and b) a protocol measuring performance results. Data was analyzed with help of ANOVA”repeated measures” in a SPSS-program. The main results showed significant differences in finger temperature between the treatment and the control groups. The conclusion was that training of the strategy used in this study probably can be used to increase efficacy in golf putting.
33

Maintaining Soil Physical Property Integrity in Turfgrass Management Systems

Craft, Jordan Michael 12 August 2016 (has links)
Traditional aerification programs can cause substantial damage to the playing surface resulting in prolonged recovery. A growing trend in the industry involves using aerification techniques that cause minimum surface disruption; however, despite growing interest in new and alternative aerification technology, there is a lack of information in the literature comparing new or alternative technology with traditional methods on warm season grasses. Therefore, the objective of this research was to determine the best combination of new dry-injection (DI) cultivation technology with modified traditional aerification programs to achieve minimal surface disruption without a compromise in soil physical properties. Research was conducted at the Mississippi State University golf course practice putting green and at the Mississippi State University practice football field during. Treatments compared different combinations of hollow tine (HT) aerification and DI from Jun to Aug in 2014 and 2015.
34

Inter- and Intra-Specific Variation in Wear Mechanisms in Agrostis: I. Wear Tolerance and Recovery Ii. Anatomical, Morphological and Physiological Characteristics

Dowgiewicz, Jason M 01 January 2009 (has links) (PDF)
Creeping bentgrass (Agrostis stolonifera L.) and velvet bentgrass (Agrostis canina L.) are the principal grass species for golf course putting greens in northern latitudes. Wear injury is a major physical stress that limits the function and quality of turfgrass. Wear evaluations in Agrostis species are limited and no studies have been conducted to evaluate recovery from wear and associated wear mechanisms. To that end, Agrostis species and genotypes were evaluated for wear tolerance and recovery on a golf green built according to USGA specifications. Equal numbers of creeping bentgrass and velvet bentgrass genotypes were tested. Wear was applied using a grooming brush over a 3-year period and plots were visually rated for wear and recovery. As much as 90% of the total variation in Agrostis wear tolerance was due to interspecific variation. Velvet entries provided significantly better wear tolerance than creeping bentgrass. Velvet bentgrass genotypes provided acceptable wear tolerance and full recovery in most years with the exception of SR-7200. None of the creeping bentgrass entries evaluated exhibited acceptable wear tolerance or achieved full recovery. Fourteen Agrostis genotypes, which included equal numbers of creeping and velvet species were selected for further evaluation of anatomical, morphological and physiological characterstics associated with wear tolerance. Eleven characteristics were measured comparing greenhouse grown spaced-plants established from field plots and seed. Characteristics included tiller density, shoot dry weight, shoot water content, relative water content (RWC), leaf width, leaf strength, leaf angle, crown type and leaf cell wall constituents. Siginificant interspecific difference in charactersitics were found. Little difference at the intraspecific level was obserevd especially within creeping bentgrass. Wear tolerant velvet genotypes were associated with a more vertical tiller and leaf angle, greater cell wall content and greater shoot density. Lignocellulose content accounted for as much as 62.8 to 72.3% of the variation in Agrostis wear tolerance while tiller density accounted for as much as 65.9 to 75.8%. Wear tolerance in Agrostis can be improved by giving priority to breeding for greater density and cell wall content with secondary emphasis to breeding for a more upright growth habit (tiller and leaf).
35

Influence of Annual Bluegrass on Putting Green Trueness and Control of Weedy Poa Species in Kentucky Bluegrass and Creeping Bentgrass Turf

Rana, Sandeep Singh 08 December 2016 (has links)
Annual bluegrass (Poa annua L.) and roughstalk bluegrass (Poa trivialis L.) are among the most troublesome grass weeds on golf courses throughout the United States. Herbicides for selective control of these weeds in cool-season fairways are limited and ineffective. Methiozolin is a new isoxazoline herbicide that controls annual bluegrass on putting greens and shows promise for possible weed control in fairways. Kentucky bluegrass (Poa pratensis L.) is among the most common turfgrass species used for golf fairways in the Northern United States and its response to methiozolin has scarcely been tested. A 2.5-yr field study was conducted at four Virginia locations to evaluate methiozolin efficacy for selective annual bluegrass and roughstalk bluegrass control in creeping bentgrass (Agrostis stolonifera L.) or Kentucky bluegrass fairways. Another study evaluated the response of 110 Kentucky bluegrass varieties to three rates of methiozolin. Annual bluegrass has long been presumed to impact putting green trueness, or the ability of the greens canopy to provide a smooth and directionally-consistent ball roll. Although much research has evaluated the impact of greens management on ball roll distance, no peer-reviewed research has evaluated how canopy surface factors, such as weedy annual bluegrass, will influence ball roll direction. Laboratory and field research was conducted to elucidate and overcome experimental errors that may be limiting assessment of ball directional imprecision caused by greens canopy anomalies. Techniques to minimize experimental error were employed in field studies at two Virginia golf courses to determine the influence of annual bluegrass on ball directional imprecision, bounce, and acceleration. Study results suggest that annual bluegrass patches in a creeping bentgrass putting surface can cause subtle increases in ball directional imprecision and bounce but several sources of error must be controlled before these effects can be measured. By using a mechanical putter to avoid directional errors associated with simulated-putt devices, selecting golf balls with balanced centers of gravity, eliminating legacy or "tracking" effects of repeated ball rolls via canopy brushing, and scoring ball direction 30 cm prior to terminal acceleration, we were able to detect an increase in ball directional imprecision of 8 mm m⁻¹ when balls rolled over a single patch of annual bluegrass compared to adjacent rolls on visually-pure creeping bentgrass. In herbicide efficacy studies, methiozolin-only treatments did not significantly injure creeping bentgrass or Kentucky bluegrass, reduce quality, or reduce normalized difference vegetative index regardless of application timings and rates. In general, fall applications of methiozolin reduced roughstalk bluegrass and annual bluegrass cover more than the spring-only treatments. At 1 year after the last treatment, methiozolin at 1500 g ha⁻¹ applied four times in fall at 2-wk intervals for two consecutive years controlled roughstalk bluegrass and annual bluegrass ≥85% and more consistently than other herbicides or treatment regimes. Spanning 110 Kentucky bluegrass varieties, a commercially-acceptable threshold of 30% Kentucky bluegrass injury required between 3.4 to more than 10 times the methiozolin rate needed for annual bluegrass control. Results indicate that annual bluegrass increases directional imprecision and bounce of golf balls rolling across a greens canopy. Methiozolin could be a viable herbicide for managing annual and roughstalk bluegrass in Kentucky bluegrass and creeping bentgrass fairways but weed control efficacy may be dependent on application timing. By measuring small differences in ball directional imprecision as influenced by greens canopy factors, future research efforts will aim to help turf managers choose appropriate greens management techniques. / Ph. D. / Annual bluegrass and roughstalk bluegrass are among the most troublesome grass weeds on golf courses throughout the United States. Both these weedy bluegrass species reduces the aesthetics and playability of golf turf, including fairways, tees, and putting greens. Since both annual bluegrass and roughstalk bluegrass favors growing conditions very similar to that of desirable cool-season grasses, especially Kentucky bluegrass and creeping bentgrass – the most prominent cool-season grasses on golf courses throughout the Northern USA, selective removal of these weedy bluegrass species from the desirable turf sward is very difficult. Moreover, genetic similarity of annual bluegrass and roughstalk bluegrass to Kentucky bluegrass accentuates the difficulty in selective control even more. Commercially-available herbicides for selective control of these weedy bluegrass species in cool-season golf fairways are limited and often ineffective for long-term control. Methiozolin (PoaCure®) is a new herbicide that has been extensively studied and shown to control annual bluegrass on golf putting greens and shows promise for possible weed control in fairways. However, PoaCure® has scarcely been tested to selectively and safely control annual bluegrass and roughstalk bluegrass in cool-season golf fairways. Therefore, field research was conducted at four Virginia locations to evaluate PoaCure® efficacy for selective, long-term annual bluegrass and roughstalk bluegrass control in creeping bentgrass or Kentucky bluegrass fairways. To assess the weed-control potential of PoaCure® on a broader spectrum of Kentucky bluegrass varieties grown here in VA and other cool-season grass growing parts of the nation, another field research was conducted to evaluate the response of 110 Kentucky bluegrass varieties to three different field application rates of PoaCure®. In PoaCure® weed control efficacy studies, PoaCure® by itself did not injure or reduced quality of creeping bentgrass or Kentucky bluegrass regardless of application timings and rates. In general, fall applications of PoaCure® reduced roughstalk bluegrass and annual bluegrass green cover more than the spring-only treatments. At trial completion, which was 2.5 years after trial initiation and 1 year after the last herbicidal treatment, PoaCure® at 82 fl oz/A applied four times in fall at 2-wk intervals for two consecutive years provided ≥85% control of annual bluegrass and roughstalk bluegrass and did so more consistently than other herbicides or treatment regimes in the study. In the tolerance study of 110 Kentucky bluegrass varieties, a commercially-acceptable threshold of 30% injury required between 3.4 to more than 10 times the PoaCure® rate needed for annual bluegrass control. Results from herbicide efficacy and tolerance studies indicate that PoaCure® could be a viable herbicide for managing annual and roughstalk bluegrass in Kentucky bluegrass and creeping bentgrass fairways but weed control efficacy may be dependent on application timing. In addition to being difficult to control and aesthetically unpleasing to view, annual bluegrass has also long been blamed for missed golf putts. Some researchers have surmised that a golf ball's direction may be altered when the ball traverses an anomaly in the greens surface, such as annual bluegrass, but no scientific studies have tested this assumption. Laboratory and field research was conducted to elucidate and overcome experimental errors that may be limiting assessment of ball directional imprecision caused by greens canopy anomalies. Study results suggest that an isolated patch of annual bluegrass increases ball directional imprecision by 8 mm m<sup>-1</sup> compared to visibly-pure creeping bentgrass and that tools and methodology currently reported in scientific literature are not precise enough to discern these subtle changes in direction. At Virginia Tech, we devised a new methodology to discern subtle changes in ball roll directional precision and bounce as influenced by an isolated patch of annual bluegrass in an otherwise visually-pure creeping bentgrass canopy. We used a mechanical putter to minimize directional errors associated with commercially-available simulated putt-devices, selected balanced golf balls, eliminated legacy of repeated ball rolls by brushing putting green surface canopy between ball rolls, scored ball direction prior to terminal acceleration with pressuresensitive paper, and used high-speed video and motion tracking software to measure ball wobble and bounce. Results indicate that annual bluegrass increases directional imprecision and bounce of golf balls rolling across a greens canopy.
36

New strategies for managing dollar spot and silvery-thread moss in creeping bentgrass putting greens

Thompson, Cole S. January 1900 (has links)
Master of Science / Department of Horticulture, Forestry, and Recreation Resources / Jack D. Fry / Dollar spot, caused by Sclerotinia homoeocarpa F.T. Bennett, and silvery-thread moss (Bryum argenteum Hedw.) are pests affecting creeping bentgrass (Agrostis stolonifera L.) that typically require pesticide inputs. New strategies for pest management may reduce chemical inputs. The objectives of these 2009-2010 field studies were to evaluate: 1) creeping bentgrass cultivars for dollar spot susceptibility; 2) alternative chemical controls for silvery-thread moss; and 3) the response of silvery-thread moss to nitrogen (N) sources. During peak dollar spot development, ‘Declaration’, ‘A-4’, and ‘Crenshaw’ had 7.5, 139.4, and 288.9 infection centers m[superscript]-2 under fairway and 2.1, 27.2, and 106.9 infection centers m[superscript]-2 under putting green conditions, respectively. Two spring and two fall spot applications of sodium or potassium bicarbonate (45 g a.i. L[superscript]-1), premixed essential oil, and broadcast applications of carfentrazone-ethyl at 0.09 kg a.i. ha[superscript]-1 suppressed moss 39% to 55% compared to untreated in 2009. Spot sprays of sodium or potassium bicarbonate, and essential oil, were phytotoxic to creeping bentgrass and required up to 8 or 18 days, respectively, to return to acceptable quality. Fertilization with liquid urea (N at 16.3 kg ha[superscript]-1 biweekly, 210 kg ha[superscript]-1 annually) resulted in 147%, 150%, and 155% more moss than fertilization with IBDU, organic N, and granular urea, respectively, and 156% more moss compared to untreated. Fertilization with urea (liquid or granular) resulted in the best creeping bentgrass color. Averaged across the entire season, plots treated with organic N had unacceptable color in 2009. Nitrogen concentrations in moss tissue ranged from 0.4% to 1.0% and were always significantly lower than N concentrations observed in creeping bentgrass (1.1% to 2.1%), regardless of treatment. In 2010, moss treated with liquid urea had higher tissue N concentrations (1.0%) than untreated moss (0.5%) or that fertilized with IBDU (0.4%). In summary, use of dollar spot-resistant creeping bentgrass cultivars could reduce fungicide requirements. Bicarbonate and essential oil products can reduce moss severity at a similar level to carfentrazone-ethyl, but rates and/or application methods need to be optimized to avoid injury to creeping bentgrass. Applications of liquid urea enhanced moss coverage in creeping bentgrass compared to other N sources.
37

Water-Use Characteristics of Warm-Season Putting Green Cultivars and Management Practices Associated with New Putting Green Genetics

Wait, Stephen Bryant 06 May 2017 (has links)
Bermudagrass (Cynodon spp.) is the most common turfgrass used on golf course putting greens in the southeastern United States (Lyman et al., 2007). In 2013, the National Turfgrass Evaluation Program (NTEP) started a 5-year trial of warm-season putting green cultivars. One of the bermudagrass cultivars in the study is MSB-285 (experimental cultivar). MSB-285 is a sister plant of MSB-264 (Philley and Munshaw, 2011) and is a distinct cultivar of C. dactylon × C. transvaalensis. MSB-285 has a more extensive root system and upright growth habit than traditional bermudagrass putting green cultivars (Philley and Munshaw, 2011). Due to MSB-285’s unique genetic makeup and growth habit, the objectives of this research were to determine if best management practices used to maintain ultradwarf bermudagrasses would be suitable for MSB-285 and to determine the water-use characteristics of MSB-285 compared to industry standard cultivars.
38

A Mechanics-Based Approach for Putt Distance Optimization

Santiago-Martinez, Pascual 01 May 2015 (has links)
Quantifying the core mechanics of putting is imperative to developing a reliable model that predicts post-collision ball behavior. A preliminary model for the stroking motion of putting and putter-ball collision is developed alongside experiments, establishing an empirical model that supports the theory. The goal of the present study is to develop a correlation between the backstroke of a putt, or the pre-impact translation of the putter, and the post-impact displacement of the golf ball. This correlation is subsequently utilized to generate an algorithm that predicts the two-dimensional ball trajectory based on putt displacement and putting surface texture by means of finite element analysis. In generating a model that accurately describes the putting behavior, the principles of classical mechanics were utilized. As a result, the putt displacement was completely described as a function of backstroke and some environmental parameters, such as: friction, slope of the green, and the elasticity of the putter-ball collision. In support of the preliminary model, experimental data were gathered from golfers of all levels. The collected data demonstrated a linear correlation between backstroke and putt distance, with the environmental parameters factoring in as a constant value; moreover, the data showed that experienced golfers tend to have a constant acceleration through ball impact. Combining the empirical results with the trajectory prediction algorithm will deliver an accurate predictor of ball behavior that can be easily implemented by golfers under most practical applications. Putt distance to backstroke ratios were developed under a variety of conditions.
39

Kurz Feuersteinova instrumentálního obohacování I očima jeho účastníků / Feuerstein Instrumental Enrichment training I assessed by its trainees

Havlíková, Vladana January 2012 (has links)
This work focuses on the form of instructor training in the method of Instrumental Enrichment at the FIE I (Feuerstein's Instrumental Enrichment I) course. Another key issue is monitoring of the professional structure of the course's attenders and the changes it undergoes with the introduction of a new instructor trainer to The Czech Republic. Next goal of the work is to explore how are the participants of the course motivated to work with this method and to cover potentional difficulties with putting it into practise as perceived by the participants themselves. Appart from covering how participants' motivation fluctuated during the course the practical part of the work also focuses on the participant's assesment of the course itself while trying to register anticipated changes in their thinking over its duration. For better understanding attenders' attitude to topics they assessed (whether it is about tools - the Instruments, a difficult sections of the lecture or technical terminology from the field of mediated learning) this work includes a brief presentation of Feuerstein's educational theory. KEY WORDS: Feuerstein's Instrumental Enrichment - FIE I, mediated learning, Instruments, motivation, putting the method into practise, professional structure of attenders
40

客語「放」及其同類動詞:框架語義與構式之互動 / Piong3 ‘put’ and its Congeners in Hakka: Frames and Constructions

羅婉君, Luo, Wan Jyun Unknown Date (has links)
本論文「客語「放」及其同類動詞:框架語義與構式之互動」以Fillmore (1985)提出的「框架語義」以及Goldberg (1995)等學者提出的「構式語法」觀點為基礎,分析客語「放」字構式呈現的多義現象。客語「放」字涉及「使動事件」:空間位移與狀態變化。本文著重分析「使動結構」與客語「放」字在動賓、動補及句子等構式中語意-句法的互動。同時藉助隱喻與轉喻的強化,說明客語「放」字延伸語意之間的關聯性,並進一步闡述客語「放」字在動賓結構中詞彙化為複合詞的現象。此外,本文亦檢視客語其他放置類動詞:方向同類動詞、工具同類動詞、方式同類動詞,經由審視其詞彙化類型與框架語義之互動,說明其語意內涵與句法上的表現。因此,本論文經由分析詞彙化類型與探討事件架構中參與角色的展現與否,說明客語放置類動詞語意與句法間的相互關係。 / English verbs describing putting, a prototypical exemplar of a caused-motion activity, have been pervasively found to be the first acquired and the most frequently used verbs in many languages. Their semantic compatibility with various syntactic structures reinforces the association between verbal meanings and the constructions, giving rise to a grouping of related but distinct senses (Goldberg et al. 2004). Piong3 (放) ‘to put’ in Hakka is abundant in semantics. The basic meaning of piong3 designates a common pattern of human experience: An animate entity exerts manual force upon a physical object and causes the object to move. Adopting Goldberg’s (1995) Constructions and Fillmore’s (1985) Frame Semantics, this study aims to account for the meaning relatedness latent in piong3 and explicate the shades of meaning rooted in the set of its congeners with different degree of family resemblance. It is argued that the delicate nuances denoted by piong3 are derived from the interaction between frames and constructions while the extended meanings of piong3 are linked to its typical use through various metaphors and metonymies such as CONTAINER, EVENT STRUCTURE, CHANGE OF STATE AS CHANGE OF LOCATION metaphors and ACTION FOR RESULT metonymy. Furthermore, with regard to congeners of piong3 in Hakka, it is maintained that differences in profiling and lexicalization patterns capture the primary difference between piong3 and its congeners. Specifically, piong3 does not lexicalize other semantic elements (i.e. path, means, manner, result, and etc.) into its lexical meaning whereas its congeners explicitly do so, in that three subtypes of the congeners can be identified: directional congeners, means congeners, and manner congeners.

Page generated in 0.0397 seconds