• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 37
  • 20
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 178
  • 32
  • 30
  • 29
  • 28
  • 27
  • 27
  • 22
  • 20
  • 19
  • 17
  • 16
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The enhancing effect of pyrite on the kinetics of ferrous iron oxidation by dissolved oxygen

Littlejohn, Patrick Oliver Leahy 05 1900 (has links)
The oxidation of ferrous in acidic sulfate media by dissolved oxygen is an important reaction in any sulfide mineral leach process that uses ferric as a surrogate oxidant. Ferric is reduced as it oxidizes metal sulfides, and the resulting ferrous is re-oxidized by dissolved oxygen. The oxidation of ferrous to ferric by dissolved oxygen is quite slow outside of elevated pressure-temperature autoclaves. However, pyrite in solution has been found to have a catalytic effect on the reaction, speeding it up significantly. This effect is particularly significant in the context of the Galvanox™ acidic sulphate atmospheric leach process. To quantify the kinetics of this reaction and the effect of pyrite, tests were run in an atmospheric batch reactor with constant tracking of pH and redox potential. The kinetics of this reaction were quantified with respect to primary variables such as acidity, pyrite pulp density, temperature, and total iron concentration. Secondary factors such as copper concentration, gas liquid mixing rate and the source of pyrite mineral were also considered. Redox potential is a logarithmic function of the ratio of the activity of free ferric to free ferrous and is complicated by speciation within the Fe(III)-Fe(II)-H₂SO₄-H₂O system. Correlating redox potential data with extent of reaction was achieved by using permanganate redox titration and the isokinetic technique to link redox potential data directly to the fraction of ferrous reacted. This technique is effective over the potential range of interest – 360 to 510 mV vs Ag/AgCl. Under these conditions the leaching rate of pyrite is appreciable, so the rate of pyrite dissolution was predicted with the shrinking sphere model developed by Bouffard et al. Ferrous oxidation in solution was simulated with an adjusted version of the model of Dreisinger and Peters, which also accounts for the catalytic effect of dissolved copper. Oxygen solubility was predicted using the model of Tromans. Experimental data show a clear enhancing effect of pyrite on ferrous oxidation. A mathematical model of this effect applicable to the conditions of Galvanox™ leaching is presented. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
32

Chemical Interactions of Hydraulic Fracturing Biocides with Natural Pyrite

Consolazio, Nizette A. 01 September 2017 (has links)
In conjunction with horizontal drilling, hydraulic fracturing or fracking has enabled the recovery of natural gas from low permeable shale formations. In addition to water, these fracking fluids employ proppants and up to 38 different chemical additives to improve the efficiency of the process. One important class of additives used in hydraulic fracturing is biocides. When applied appropriately, they limit the growth of harmful microorganisms within the well, saving energy producers 4.5 billion dollars each year. However, biocides or their harmful daughter products may return to the surface in produced water, which must then be appropriately stored, treated and disposed of. Little is known about the effect of mineral-fluid interactions on the fate of the biocides employed in hydraulic fracturing. In this study, we employed laboratory experiments to determine changes in the persistence and products of these biocides under controlled environments. While many minerals are present in shale formations, pyrite, FeS2(s) is particularly interesting because of its prevalence and reactivity. The FeII groups on the face of pyrite may be oxidized to form FeIII phases. Both of these surfaces have been shown to be reactive with organic compounds. Chlorinated compounds undergo redox reactions at the pyrite-fluid interface, and sulfur-containing compounds undergo exceptionally strong sorption to both pristine and oxidized pyrite. This mineral may significantly influence the degradation of biocides in the Marcellus Shale. Thus, the overall goal of this study was to understand the effect of pyrite on biocide reactivity in hydraulic fracturing, focusing on the influence of pyrite on specific functional groups. The first specific objective was to demonstrate the effect of pyrite and pyrite reaction products on the degradation of the bromine-containing biocide, DBNPA. On the addition of pyrite to DBNPA, degradation rates of the doubly brominated compound were found to increase significantly. DBNPA is proposed to undergo redox reactions with the pyrite surface, accepting two-electrons from pyrite, and thus becoming reduced. The primary product is the monobrominated analogue of DBNPA, 2-monobromo-3-nitrilopropionamide (or MBNPA). The surface area-normalized first-order initial degradation rate constant was found to be 5.1 L.m-2day-1. It was also determined that the dissolution and oxidation products of pyrite, FeII, S2O32- and SO42- are unlikely to contribute to the reduction of the biocide. Taken together, the results illustrate that a surface reaction with pyrite has the ability to reduce the persistence of DBNPA, and as a consequence change the distribution of its reaction products. The second objective was to quantify the influence of water chemistry and interactions with pyrite on the degradation of the sulfur-containing biocide. Dazomet readily hydrolyzes in water due to the nucleophilic attack of hydroxide (OH-) anions. Thus the half-life of dazomet during the shut-in phase of hydraulic fracturing will decrease with increasing pH: 8.5 hours at pH 4.1 to 3.4 hours at pH 8.2.Dazomet degradation was rapidly accelerated upon exposure to the oxidized pyrite surface, reacting five times faster than hydrolysis in the absence of pyrite at a similar pH. The products measured were identical to those identified on hydrolysis (methyl isothiocyanate and formaldehyde) and no dissolved iron was detected in solutions. This suggests that the dithiocarbamate group in dazomet was able to chemisorb onto the oxidized pyrite surface, shifting the electron density of the molecule which resulted in accelerated hydrolysis of the biocide. The third objective explored the reactivity of various biocide functional groups due to the addition of pyrite. Several elimination mechanisms were identified, and tied to the reactivity of the specific functional group involved. The addition of pyrite led to accelerated degradation of dibromodicyanobutane. This is because the bromine (-Br) group is easily reduced. For methylene bis(thiocyanate), hydrolysis was a noteworthy elimination mechanism since the thiocyanate (-SCN) functionality is a good leaving group. Benzisothiazolinone and methyl isothiazolinone were stable at low pH due to the stabilizing donor-acceptor interactions between the organic biocides’ carbonyl (–C=O) groups and salts in the solution. This body of work has illustrated that pristine pyrite can undergo redox reactions with brominated biocides used in hydraulic fracturing, reducing their persistence and altering the product distribution. This will change the efficacy and the risks associated with the use of these biocides in shales containing pyrite, particularly at lower pH where organic compounds are more stable to hydrolysis. However, at higher pH hydrolysis becomes more important, and additional studies will need to be conducted to investigate the pyrite contribution under these conditions. Conversely, the FeIII surface groups on oxidized pyrite can catalyze the hydrolysis of dazomet and may do so for other labile, sulfur-containing biocides as well. Overall, this research has shown that the physicochemical properties (such as the acid dissociation constant and the standard reduction potential) that govern the environmental reactivity of a molecule can be used to anticipate its reactivity in hydraulic fracturing.
33

The Electronic Structure and Reactivity of Sulfide Surfaces: Combining Atomic-Scale Observations with Theoretical Calculations

Rosso, Kevin Michael 16 June 1998 (has links)
The electronic structure of clean pyrite {100} and covellite {001} surfaces have been investigated in ultra-high vacuum (UHV) for the purpose of understanding the nature of sulfide surface reactivity. Using primarily scanning tunneling microscopy and spectroscopy (STM/STS), the electronic structure at atomic sites on these surfaces was directly probed, and chemical insight into the results was provided by ab-initio calculations. Pyrite is the most abundant sulfide at the earth's near surface. Its oxidation influences a wide variety of natural and industrial chemical process, but very little is known about the stepwise oxidation reactions involved. For this reason, the first two chapters are directed at understanding the surface electronic structure and fundamental reactivity of pyrite surfaces at the atomic scale. UPS spectra show a characteristic peak at ~ 1 eV forming the top of the valence band for the near surface. Ab-initio calculated densities of states for the bulk crystal suggest that this band is comprised primarily of non-bonding Fe 3d t<sub>2g</sub> and lesser S 3p and Fe 3d e<sub>g</sub> states. Ab-initio slab calculations predict that the broken bonding symmetry at the surface displaces a Fe 3d<sub>Z</sub>2 dangling bond state into the bulk band gap. Evidence confirming the presence of this surface state is found in low bias STM imaging and normalized single-point tunneling spectra, which are in remarkable agreement with calculations of the LDOS at surface Fe and S sites. The results predict that due to the dangling bond surface states, Fe sites are energetically favored for redox interaction with electron donors or acceptor species. STM/STS observations of O₂/H₂O exposed surfaces are consistent with this assertion, as are ab-initio cluster calculations of adsorption reactions between O₂/H₂O derived species and the {100} surface. Furthermore, an enhancement in the "rate" of oxidation was discovered using UPS on pyrite surfaces exposed to a mixture of O₂/H₂O. Cluster calculations of adsorption energies reveal a similar result for the case where both O₂ and H₂O are dissociated on the surface and sorbed to Fe sites. Covellite, similar to pyrite, is a natural semiconducting metal sulfide. In contrast, however, precious metal bearing solutions have a curiously lower affinity for covellite surfaces than for pyrite. At the same time, its unique combination of low resistivity and perfect basal cleavage represented a unique opportunity to improve our ability to interrogate metal sulfide surfaces using STM/STS at the atomic scale. Ab-initio calculations predict that cleaving covellite exposes two slightly different surfaces, one is expected to have dangling bonds, the other is not. Atomic-scale STM images and LEED patterns indicate that the surface structure is laterally unreconstructed. The STM images are predicted to show Cu sites as high tunneling current sites on the dangling bond covered surface, and S sites on the other. Based on tunneling spectra and tip-induced effects therein, reasonable arguments are presented which allow one to uniquely differentiate between the two possible surfaces. For both pyrite and covellite, the combination of experiment and theoretical calculations afforded much more insightful conclusions than either would have alone. The calculations provided the necessary chemical framework with which to make interpretations of the experimental data and, in this sense, contribute information obtainable by no other means. This point is further developed in an investigation of Si-O interactions and the electron density distribution in the model silicate coesite, which is presented in the appendix. In addition, it breaks new ground by delving into differences and similarities between periodic vs. cluster calculations of minerals. / Ph. D.
34

Chemical Weathering of Pyrite in Soils

Brown, Aaron D. 01 May 1985 (has links)
The products of pyrite oxidation, including solution phase Fe2+, Fe3+, S2O32-, S4O62-, SO32- and SO42- and solid phase Fe(OH)3, were measured under controlled conditions in order to investigate the behavior of pyrite in calcareous and alkaline soils. The distribution of sulfur oxidation products is pH dependent and can be interpreted in terms of metastable equilibrium among thiosulfate, disulfane disulfonate and sulfite. Thisulfate and sulfite predominate in the pH range greater than about pH 7 or 8. Sulfane disulfonates are more predominant at more acid pH. Solution concentration data were consistent with the presence of Fe(OH)3. Concentrations of thiosulfate and sulfane disulfonate were consistent with a redox equilibrium among solution iron and sulfure species at pH 6 to 9. Linear or zero-order kinetics were found to be sufficient for description of pyrite oxidation in this study. Linear kinetics were observed as electrical conductivity, solution sulfur products and solution plus solid phase iron products. The measurement of solution iron plus solid-phase iron oxide is a more rigorous approach to the extent of reaction than the measurement of sulfate. The rate of pyrite oxidation is pH dependent, increasing from 10-20 pmol(Fe) m-2 s-1 to 40-60 pmol(Fe) m-2 s-1 between pH 5 and 9. This is consistent with an oxidation mechanism involving the reoxidation of solution Fe2+ via a reaction between an iron hydroxide complex and hydrated oxygen as the rate-determining step. The effect o background electrolytes on oxidation rates at low pH also supports this interpretation. Pyrite oxidation rates in the presence of calcium carbonate, sodium bicarbonate, sodium thiosulfate and calcium-saturated bentonite can be related to the pH effect. Sodium thiosulfate and DTPA appeared to have specific inhibitory effects. Column studies show that the disposal of pyritic mine spoils or tailings by mixing with calcareous material may produce thiosulfate, a good reducing agent for toxic metals. Burial of lime below pyritic materials may protect groundwater quality more effectively than application of lime to the surface.
35

Sorption de Radionucléides dans des Barrières Cimentaires Renforcées / Sorption of Radionuclides in Reinforced Cementitious Barriers

Ma, Bin 19 December 2017 (has links)
La sorption et les réactions redox des radionucléides (RN) sont des processus critiqués pour une évaluation de la sécurité des dépôts de déchets nucléaires. Dans les dépôts géologiques, ces procédés peuvent se produire dans (i) une couche de corrosion (acier), (ii) un béton armé, par exemple, sur le ciment hydraté et (iii) l'argilite, sur la pyrite et les argiles ou le granit. Les produits de corrosion de l'acier et la pyrite agissent comme des tampons de réduction locaux, contrôlant le potentiel redox (Eh) et donc le comportement de sorption des RN sensibles au rédox. En revanche, la sorption de RN n'impliquant pas de processus redox peut se produire sur des argiles, des oxydes de fer et des produits d'hydratation de ciment et impliquent souvent des processus d'adsorption de surface, d'échange d'ions ou de co-précipitations. Dans cette thèse de doctorat, des phases d'AFm cimentaires mineures, mais hautement réactives (acides gras AFm-Cl2 ou AFm-SO4, appartenant aux LDH CaAl) ont été utilisées pour adsorber MoO42- et SeO32- à diverses charges de surface. Une combinaison de la modélisation de l'équilibre chimique PHREEQC et des techniques de rayons X à base de synchrotron (par exemple, XRD, PDF et XAFS résolus dans le temps) révèle que les sites de sorption multiples, y compris deux types de sites de bord, des sites d'échange d'ions intercalaires et une précipitation de phase riche en Ca, sont des processus actifs dans la rétention des RN sur les phases AFm. Une relation linéaire permet de lier l'espacement basal AFm et le rayon d'anion intercalé hydraté. L'adsorption macroscopique MoO42 a été évaluée sur le ciment hydraté renforcé d'acier et de ses composants individuels (p. Ex. Fe0, CSH, ettringite, phase AFm, portlandite, gypse, pyrite, mackinawite) à pH 13,5 et le signal EXAFS ne pouvait être obtenu que pour Mo sorbed sur les phases AFm et les produits d'oxydation Fe0, en montrant qu'ils sont les absorbants les plus efficaces. La co-sorption de U et Mo sur le ciment-ciment hydraté renforcé par Fe0 a également été étudiée par cartographie micro-sonde, montrant que U doit être immobilisé instantanément par des matériaux de ciment tandis que Mo est préférentiellement sorbé sur des produits de réaction de Fe. La valeur Eh prédominant dans le béton est difficile à déterminer. Ici, les RN sensibles à la réduction rénale (par exemple, UVI, SeIV, MoVI et SbV) sont utilisées comme sondes, pour mesurer les valeurs Eh in-situ, en calculant l'équation de Nernst de la manière suivante. La concentration des espèces réduites a été mesurée en fonction de la concentration totale de RN précipitée par réduction et de la spéciation parmi ces espèces réduites, tel qu'obtenu par l'analyse LCF des données XANES. La concentration de l'espèce oxydée unique a été prise égale à la concentration chimique aqueuse totale, car toutes les espèces réduites identifiées sont extrêmement insolubles. Les valeurs Eh déterminées expérimentalement obtenues de cette façon étaient remarquablement fermées pour toutes les RN avec des valeurs centrées de -368 à -524 mV pour l'eau de pore de ciment (CPW) équilibrée avec Fe0 et des valeurs de -346 à -509 mV pour CPW équilibrées avec des produits de corrosion Fe - couples d'oxydes (magnetite / hématite ou magnetite / goethite) à pH ~ 13,5. Ni la valeur Eh calculée pour ces couples ni pour Fe0 / Fe (OH)2 correspond à ces données. Au lieu de cela, le potentiel redox semble être contrôlé par le couple Fe (OH)3 / Fe (OH)2 prédominant au début de la corrosion Fe0. Enfin, dans le domaine de l'argile ou du granit, plusieurs facteurs peuvent affecter de manière critique l'Eh imposé par la minérale mine de pyrite, à savoir les impuretés élémentaires dans le réseau de pyrite et les fractures résultant du broyage et de la présence de Fe3+et S2- à la surface de la pyrite. Les impuretés des éléments et la présence de S2- sur la surface de la pyrite ont largement accéléré la réduction des U (VI). / Sorption and redox reactions of radionuclides (RNs) are critical processes for a nuclear waste disposal repository safety assessment. In geological repositories, these process may occur in (i) canister (steel) corrosion layer, (ii) reinforced concrete, e.g. on hydrated cement and (iii) argillite, e.g. on pyrite and clays or granite. Both steel corrosion products and pyrite act as local reducing buffers, controlling the redox potential (Eh) and thus the sorption behavior of redox-sensitive RNs. In contrast, sorption of RNs not involving redox processes may occur on clays, iron oxides and cement hydration products, and often involve surface adsorption, ion exchange, or co-precipitations processes. In this PhD thesis, minor but highly reactive cementitious AFm phases (AFm-Cl2 or AFm-SO4 solids, belonging to CaAl LDHs) were employed to adsorb MoO42- and SeO32- at various surface loadings. A combination of PHREEQC chemical equilibrium modelling and synchrotron-based X-ray techniques (e.g., in-situ time-resolved XRD, PDF, and XAFS) reveals that multiple sorption sites, including two types of edge sites, interlayer ion exchange sites, and a Ca-rich phase precipitation, are active processes in the RNs retention on AFm phases. A linear relationship is shown to link AFm basal spacing and hydrated intercalated anion radius. MoO42- macroscopic adsorption was evaluated on steel-reinforced hydrated cement and its individual components (e.g., Fe0, C-S-H, ettringite, AFm phase, portlandite, gypsum, pyrite, mackinawite) at pH 13.5, and EXAFS signal could only be obtained for Mo sorbed on AFm phases and Fe0 oxidation products, showing they are the most effective absorbents. Co-sorption of U and Mo on Fe0-reinforced hydrated cement-core has also been investigated by micro-probe mapping, showing U to be instantly immobilized by cement materials while Mo is preferentially sorbed on Fe reaction products.The Eh value prevailing in concrete is hard to be determined. Here, redox-sensitive RNs (e.g., UVI, SeIV, MoVI, and SbV) are employed as probes, to measure in-situ Eh values, by computing the Nernst equation in the following way. Reduced species concentration were measured based on the total concentration of reductively precipitated RN and on speciation among these reduced species as obtained by LCF analysis of XANES data. The single oxidized species concentration was taken equal to the total aqueous chemical concentration, as all identified reduced species are extremely insoluble. The experimentally determined Eh values obtained that way were remarkably closed for all RNs with centered values of -368 to -524 mV for cement pore water (CPW) equilibrated with Fe0 and values of -346 to -509 mV for CPW equilibrated with corrosion products Fe-oxides couples (magnetite/hematite or magnetite/goethite) at pH ~13.5. Neither the Eh value computed for these couples or for Fe0/Fe(OH)2 match these data. Instead, the redox potential appear to be controlled by the Fe(OH)3/Fe(OH)2 couple predominating at the beginning of Fe0 corrosion. Finally, within clay or granite far field, several factors may critically affect the Eh imposed by pyrite minor mineral, namely element impurities in pyrite lattice and fractures resulting from grinding and presence of Fe3+ and S2- at the pyrite surface. Element impurities and presence of S2- on the pyrite surface were shown to largely speed up U(VI) reduction. The experimental results obtained above could provide fundamental data for the safety assessment of nuclear waste disposal.
36

Elemental and S Isotope Geochemistry of Arsenian Pyrite from the Round Mountain Gold Deposit: Implications for S Sources and Hydrothermal Fluid Evolution

Ruley, Alexander Andrew 21 December 2021 (has links)
No description available.
37

Estudo eletroquímico da interação espontânea entre pirita natural e íons mercúrio II / Electrochemical study of the spontaneous interaction between natural pyrite and mercury ions II

Moreira, Wagner Alves 29 April 2002 (has links)
A interação espontânea entre pirita e íons mercúrio foi acompanhada por meio de voltametria cíclica. Eletrodos de carbono grafite e parafina sólida recobertos com grãos de pirita foram mergulhados em soluções contendo íons mercúrio, retirados, lavados e introduzidos na solução de trabalho (solução tampão de ácido acético 0,25M e acetato de sódio 0,25M). Eletrodos que previamente estiveram imersos na solução contendo íons Hg(II) apresentaram um potencial de circuito aberto maior que o potencial típico da pirita na mesma solução. Com o elevado número de novos processos eletroquímicos detectados verifica-se a complexidade do sistema pirita/íons Hg(II) e que mais de uma espécie de mercúrio se deposita espontaneamente sobre o mineral. A possibilidade de formação de sulfeto de mercúrio sobre a pirita foi investigada construindo eletrodos com duas espécies de sulfeto (HgS(preto) e HgS(vermelho)). A resposta eletroquímica do HgS(preto) apresenta processos catódicos e anódicos semelhantes aos processos observados no voltamograma da pirita, após sua interação com íons Hg(II). Entretanto, o perfil eletroquímico do HgS(vermelho) não apresenta qualquer semelhança com voltamograma do sistema pirita/íons Hg(II). Realizou-se estudos para verificar a influência de variáveis químicas (concentração e pH) e físicas (tempo, temperatura e transporte de massa). Observou-se que o transporte de massa acelera o processo de adsorção de espécies de mercúrio sobre a pirita e determinou-se a melhor condição experimental de retirada de íons mercúrio. / The spontaneous interaction between pyrite and mercury ions was studied employing cyclic voltammetry. The electrodes, consisting of solid paraffin and graphite covered by pyrite particles, were immersed in solutions containing mercury ions. After mineral/mercury ions interaction, the electrode was washed and introduced in the working solution (acetic acid 0,25M and acetate of sodium 0,25M). Eletrodes which were immersed in the solution containing mercury ions, presented a open circuit potential more positive than that of the pyrite in the same solution. The high number of new electrochemical processes detected denotes the complexity of the system pyrite/mercury ions and indicates that several species of mercury may deposit spontaneously on the mineral surface. The possibility of formation of mercury sulfide on the pyrite was investigated employing electrodes constructed with HgS(Black) and HgS(red). The electrochemical response of HgS(black) presents cathodic and anodic processes similar to that observed in the voltammogram of pyrite, after interaction with mercury ions. The potentiodynamic profile of HgS(red) it does not present any similarity with the voltammogram of the system pyrite/mercury ions. Studies were carried out to verify the influence of chemical (concentration and pH) and physical variables (time, temperature and mass transport). It was observed that the mass transport accelerates the adsorption process of mercury species on the pyrite surface and the optimal experimental condition for scavenging mercury ions was determined.
38

GEOCHEMISTRY AND ORGANIC PETROGRAPHY OF THE ANNA SHALE (PENNSYLVANIAN) AND THE OCCURENCE OF PYRITE “SUNS” IN SOUTHWESTERN ILLINOIS

Dyson, Jacob 01 August 2019 (has links)
The Anna Shale (Pennsylvanian) is an organic-rich, marine black shale that commonly overlies the Herrin (No. 6) Coal of the Carbondale Formation, Illinois Basin. Disk-shaped iron sulfide concretions, called pyrite suns, which are commonly up to 10 cm or more across are found in the lowest few centimeters of the Anna Shale in coal mines near Sparta in southwestern Illinois. This area is the only known location where pyrite suns of this size have been found, suggesting that unusual geochemical and/or depositional conditions led to their formation. The primary objective of this study was to evaluate the geochemical conditions at the time of Anna Shale deposition in the area where the pyrite suns formed.
39

Sulfide Mineralogy in the Ballachulish contact metamorphic Aureole

Åström, Ossian January 2012 (has links)
16 samples of increasing metamorphic grade from the Ballachulish Igneous Complex and Aureole, located in the west of Scotland, were studied in order to analyze the sulfide mineralogy and to what extent they were affected by contact metamorphism. The samples were collected from two lithologies, the Creran Succession and the Ballachulish Slate lithology, as well as from the igneous complex. The sulfides of main interest in the samples are pyrite and pyrrhotite. At the onset of contact metamorphism, pyrite disappears while pyrrhotite gets more abundant as metamorphic grade increases. Pyrrhotite also undergoes multiple changes such as 1) elongation and thinning of the grains, 2) development of 120° grain-boundaries, 3) development of pyrite-zones within the pyrrhotite and 4) the decomposition of pyrrhotite and alignment of pyrite along its grain-boundaries at high temperature. The elongation of the grains occurs in both the Creran Succession and the Ballachulish Slate. The rest of the textures, however, can only be found in the Creran Succession. The two lithologies differ by the high graphite content in the Ballachulish Slate. The elongated grains as well as the pyrite inclusions in the pyrrhotite both are strong evidence of recrystallization. The absence of pyrite in the Ballachulish Slate was most probably caused by the buffering properties of the graphite-rich fluid in these rocks, causing more reducing conditions. There is evidence against a heavy, pervasive fluid flow through the aureole. However, the inner contact zone seems to have been affected by a more pronounced fluid flow. This could have been caused by the metamorphic fluid working in conjunction with fluids released from the intrusion. Regarding the mobility of S in the aureole, no strong evidence could be found, other than the decomposition of pyrrhotite grain-boundaries in the high-grade metamorphic samples.
40

Nouvelles méthodes de flottation des minerais pyriteux à plomb-cuivre-zinc : utilisation séquentielle et simultanée d'oxydants et de thiosels.

Marouf, Bouchaïb, January 1900 (has links)
Th.--Sci. phys.--Nancy--I.N.P.L., 1985.

Page generated in 0.0635 seconds