• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 12
  • 12
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study and application of multi-reentrant two-spherical-mirror ring lasers

Huang, Pi-Ling 23 June 2003 (has links)
A novel non-planar and multi-reentrant two-spherical-mirror ring cavity is demonstrated. It is compact and free of astigmatism compare to the commercial ring cavity systems. The multi-reentrant condition of the ring cavity is derived and the stability of the laser cavity is analyzed. The study of polarization evolution in this kind of ring cavity is also presented. Unidirectional operation is achieved by use of reciprocal and nonreciprocal polarization rotators to differentiate the round-trip loss. The multi-reentrant ring cavity has been utilized in single frequency laser and passively Q-switched laser. Single frequency laser possesses the advantages of high coherence and low noise, which can be used to the applications such as precision measurement. In the methods of single frequency generation, ring cavity configuration was shown to be the most robust one. Using this ring cavity, an IR and its intra-cavity frequency doubled green laser were demonstrated which the amplitude noise is lower than 0.3%. Passively Q-switched laser is an efficient and compact way to generate high-peak-power laser pulses because high voltages and fast driving electronics are not required. Its high power is useful for diverse applications including nonlinear optical processes, micromachining, material processing and range finders. But the major drawback of a passively Q-switched laser is its inherent large timing jitter, which is mainly originated from the photo dynamics in the cavity, environmental instabilities and spontaneous noise from the gain medium. In our study, we demonstrated the operation of a low-jitter, passively Q-switched laser by using the reentrant two-mirror unidirectional ring cavity, which generates a pulse width of 63ns, peak power of 250 W laser output. Due to the elimination of spontaneous noise and spatial hole burning effects, the timing jitter can be maintained below 3% over a wide range of pump powers with integrations of over 52,000 pulses.
2

All-fiber modulators for laser applications

Malmström, Mikael January 2012 (has links)
The objective of this thesis was to explore the usefulness of all-fiber modulators for laser applications. The modulators were all based on refractive index change achieved in the core of the studied fiber- components, exploiting either the elasto-optic effect or the electro-optic effect. This was realized with the aid of electrodes inside the fiber cladding close to the core that provided either thermal stress in the core, or an electric field across the core. The electrodes consisted of low melting-point alloys, such as BiSn and AuSn, which were pushed into the hole-fiber, in the liquid state, which then solidified to form solid electrodes filling the entire hole. Together with an analyzer such as a polarizer or an interferometer the achieved refractive index modulation in the core could then be translated into an amplitude modulation of the guided light, which was subsequently utilized for switching fiber-lasers to generate cavity dumped, Q-switched, or mode-locked pulses. The fast rise/fall-time of a few nanoseconds for the elasto-optic devices was due to the fast thermal expansion of the electrodes. The maximum repetition rate, however, was limited to a few tens of kHz, due to the slow thermal processes for dissipation of the applied energy. The electro-optic fiber components, which displayed similar rise/fall-times on the other hand, showed a much higher cut-off frequency of 16 MHz. The electro-optic, all-fiber switch was also employed to select single pulses at 1 MHz repetition rate out of a 7 MHz train of pulses. Additionally, simulations using the finite element method were performed in order to gain insight and to explain the underlying processes of the observed response of a long-period grating written in a 2-hole fiber with electrodes, when applying HV-pulses to one of these. The thesis shows that the studied fiber-components show great potential of becoming complementary devices with high damage threshold for all-fiber laser applications in the future. / <p>QC 20121129</p>
3

Pulsed time-of-flight laser range finder techniques for fast, high precision measurement applications

Kilpelä, A. (Ari) 30 January 2004 (has links)
Abstract This thesis describes the development of high bandwidth (~1 GHz) TOF (time-of-flight) laser range finder techniques for industrial measurement applications in the measurement range of zero to a few dozen metres to diffusely reflecting targets. The main goal has been to improve single-shot precision to mm-level in order to shorten the measurement result acquisition time. A TOF laser range finder consists of a laser transmitter, one or two receivers and timing discriminators, and a time measuring unit. In order to improve single-shot precision the slew-rate of the measurement pulse should be increased, so the optical pulse of the laser transmitter should be narrower and more powerful and the bandwidth of the receiver should be higher without increasing the noise level too much. In the transmitter usually avalanche transistors are used for generating the short (3–10 ns) and powerful (20–100 A) current pulses for the semiconductor laser. Several avalanche transistor types were compared and the optimization of the switching circuit was studied. It was shown that as high as 130 A current pulses are achievable using commercially available surface mount avalanche transistors. The timing discriminator was noticed to give the minimum walk error, when high slew rate measurement pulses and a high bandwidth comparator were used. A walk error of less than +/- 1 mm in an input amplitude dynamic range higher than 1:10 can be achieved with a high bandwidth receiver channel. Adding an external offset voltage between the input nodes of the comparator additionally minimized the walk error. A prototype ~1 GHz laser range finder constructed in the thesis consists of a laser pulser and two integrated ASIC receiver channels with silicon APDs (avalanche photodiodes), crossover timing discriminators and Gilbert cell attenuators. The laser pulser utilizes an internal Q-switching mode of a commercially available SH-laser and produces optical pulses with a pulse peak power and FWHM (full-width-at-half-maximum) of 44 W and 74 ps, respectively. Using single-axis optics and 1 m long multimode fibres between the optics and receivers a total accuracy of +/-2 mm in the measurement range of 0.5–34.5 m was measured. The single-shot precision (σ-value) was 14 ps–34 ps (2–5 mm) in the measurement range. The single-shot precision agrees well with the simulations and is better with a factor of about 3-5 as compared to earlier published pulsed TOF laser radars in comparable measuring conditions.
4

A solid state laser system for Doppler-free spectroscopy of muonium

Bakule, Pavel January 1998 (has links)
No description available.
5

Laser de Nd:YLF para aplicacoes em lidas / Nd:YLF Laser for LIDAR applications

FERRARI, MARCO A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:55:21Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:05:58Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
6

Laser de Nd:YLF para aplicacoes em lidas / Nd:YLF Laser for LIDAR applications

FERRARI, MARCO A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:55:21Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:05:58Z (GMT). No. of bitstreams: 0 / A utilização de lasers de estado sólido bombeados por diodos laser tem atraído interesse crescente devido a sua alta eficiência, seu tamanho compacto e com a possibilidade da operação com altas potências-pico. O objetivo deste trabalho foi estudar configurações de cavidades ressonantes laser, que possibilitem a obtenção de pulsos chaveados Q e futura dobra de freqüência, para aplicações em LIDAR (Light Detection and Ranging), utilizando como meio ativo cristais de Nd:YLF crescidos pelo método de Czochralski no Centro de Lasers e Aplicações IPEN USP, com bombeio lateral por diodo laser, com uma, duas, quatro e nove reflexões internas totais do feixe laser na superfície do cristal. Das seis cavidades construídas, três cavidades foram desenvolvidas para operarem com baixo ganho, grande armazenamento de energia e com grande aproveitamento de inversão de população, bombeadas com diodo laser em 806 nm e outras três cavidades foram desenvolvidas para operarem com alta absorção de bombeio e alto ganho, bombeadas com diodo laser emitindo em 797 nm. Das seis cavidades desenvolvidas, as que apresentaram melhor eficiência de conversão óptica, foram as cavidades operando com alto ganho e alta absorção (cavidade quatro a seis), com 29,5% e 20,7% de eficiência de conversão óptica, propiciando a obtenção de pulsos chaveados de 20 ns com potência-pico de 160kW. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
7

Pulsed Yb:KYW laser and UV generation

Tjörnhammar, Staffan January 2010 (has links)
In this master thesis project, a pulsed UV laser was designed and constructed. Also, the effects of absorption in a volume Bragg grating were investigated. The laser was diode pumped and constructed with Yb:KYW as gain medium. The lasing was at a wavelength of 1029.2 nm with a spectral bandwidth of 0.23 nm, locked by a volume Bragg grating that was used as input coupler for spectral control. Passive Q‑switching was used to generate pulses by placing a Cr:YAG saturable absorber inside the cavity. The laser generated radiation with a maximum peak power of 3.8 kW at an average power of 0.35 W, a repetition rate of 4 kHz and a pulse width of 16 ns. The maximum average power was 1.3 W with a peak power of 2 kW at a repetition rate of 20 kHz and with a pulse width of 20 ns. Through extra‑cavity second harmonic generation using an LBO crystal, green light at a wavelength of 514.7 nm was generated. The maximum average power was 130 mW with an optical conversion efficiency from the fundamental of around 10 %. Then, the second harmonic and the fundamental wave were mixed to generate UV light, at a wavelength of about 343 nm, by using a second LBO crystal. The maximum average power of UV was about 23 mW with an optical efficiency, with respect to the green, of approximately 20 %. One limitation of the laser was that the Cr:YAG was bleached not only by the circulating laser field, but also by remaining pump light. This resulted in decreasing peak power with increasing pump power, thus limiting the nonlinear conversion efficiencies. Thermal fracture of the Cr:YAG was a limiting factor for the intra-cavity average power, while burning of the coating on the Yb:KYW crystal limited the maximum peak power. The effects on a laser when using too high power for the level of absorption in a volume Bragg grating were also investigated. The effects of both resonant and non-resonant beams were investigated.  Since the intensity of a resonant beam decreases approximately exponentially in a volume Bragg grating, due to absorption, an uneven temperature distribution along the propagation axis is formed. This results in different thermal expansion and hence, results in a longitudinal chirp of the grating. The chirp caused a decrease in both reflectivity and spectral selectivity. The reflectivity of the particular grating used in these experiments decreased from 99.4 % to 93 %. In addition, it was experimentally shown that if a volume Bragg grating absorbs a non-negligible amount of a non-resonant beam, the thermal load will deform the volume Bragg grating. Therefore, it is not suitable to use such a grating the as input coupler of a laser cavity. / I detta examensarbete utformades och konstruerades en pulsad UV-laser. Dessutom undersöktes effekterna av absorption i ett volymbraggitter. Som laserkristall användes Yb:KYW vilken pumpades med en diodlaser. Lasring skedde vid 1029,2 nm med en bandbredd av 0,23 nm genom att ett volymbraggitter användes som inkopplingsspegel för att kontrollera spectrumet. Pulser generades genom passiv Q-switching med en Cr:YAG som mättnadsbar absorbator inne i kaviteten. Den maximala toppeffekten var 3,8 kW vid 0.35 W medeleffekt, 4 kHz repetitionsfrekvens och en pulsbredd på 16 ns. Den maximala medeleffekten var 1.3 W med en toppeffekt på 3,8 kW, 20 kHz repetitionsfrekvens och en pulsbredd på 20 ns. Genom frekvensdubbling i en LBO kristall genererades grönt ljus vid våglängden 514,7 nm. Den maximala medeleffekten var 130 mW med en optisk verkningsgrad från den fundamentala våglängden på 10 %. Sedan blandades det infraröda och det gröna ljuset i en andra LBO kristall för att generera UV-ljus, vid en våglängd om 343 nm. Den högsta medeleffekten av UV var cirka 23 mW med en optisk verkningsgrad, med avseende på det gröna ljuset, på ungefär 20%. En begränsning av laser var att Cr:YAG kristallen blektes inte enbart av lasern utan även av pumpen. Detta resulterade i fallande toppeffekt med ökande pumpeffekt, vilket begränsade effektiviteten i den ickelinjära konverteringen. Termisk fraktur på Cr:YAG kristallen var en begränsande faktor för cirkulerande medeleffekten i kaviteten, medan brännskador på Yb-kristallens antireflexbehandling begränsade toppeffekten. Effekterna i en laser vid användning av en alltför hög effekt i förhållande till nivån av absorption i ett volymbraggitter studerades också. Effekterna av både resonanta och ickeresonanta strålar undersöktes. Eftersom intensiteten av en resonant ståle minskar ungefär exponentiellt i ett volymbraggitter kommer temperaturen, på grund av absorption, fördelas ojämnt i propageringsriktningen. Detta resulterar i olika termiska expansion med en längsgående varierad gitterperiod som följd. Detta orsakar en minskning utav både reflektiviteten och den spektrala selektiviteten. Reflektiviteten i gittret som användes i dessa experiment minskade från 99,4 % till 93 %. Dessutom visades det experimentellt att om ett volymbraggitter absorberar en icke försumbar del av en ickeresonant stråle kommer värmebelastning att deformera volymenbraggittret. Därför är det inte lämpligt att använda ett sådant gitter som inkopplingsspegel i en laser.
8

Diode-Pumped, 2-Micron, Q-Switched Tm:YAG Microchip Laser

Phelps, Charles Dustin 16 May 2011 (has links)
No description available.
9

Compact solid-state lasers in the near-infrard and visible spectral range

Seger, Kai January 2013 (has links)
The subject of this thesis is the exploration of new concepts for compact solid-state lasers in the visible and near-infrared spectral range using new components such as volume Bragg gratings for wavelength stabilisation and wavelength tuning. Also single-walled carbon nanotubes for mode-locking and Q-switching of lasers have been studied.We have developed a new method for the tuning of solid-state lasers by replacing a dielectric mirror with a transversally chirped volume Bragg grating, which allows smooth wavelength tuning without additional elements inside the laser cavity. The result is a more compact laser, since the tuning mechanism and output coupler are incorporated in one component. Another benefit is an increased efficiency, since additional elements inside the cavity will always add to the total loss of the laser. This has been demonstrated for a broadband ytterbium laser around 1 µm and a single-longitudinal-mode Nd:YVO4 laser around 1.06 µm. A volume Bragg grating has also been used to construct an efficient, narrow-linewidth ytterbium fiber laser and the employment of a volume Bragg gratingas the pump mirror of a solid-state laser for frequency-doubling has been investigated. Both lasers represent a practical solution, eliminating the use of additional intracavity elements. Second-harmonic generation is an efficient way to access the visible spectral range using diode-pumped solid-state lasers. However, these lasers can suffer from large amplitude fluctuations, which has been analyzed in more detail for an optically-pumped semiconductor disk-laser and a volume Bragg grating locked ytterbiumlaser. The control of those amplitude fluctuations is very important, since many applications like fluorescence microscopy require a laser with a constant output power and as little noise as possible. In addition to this, we have demonstrated, that saturable absorbers based on quan-tum dots and carbon nanotubes can be used to mode-lock compact laser at a wavelength around 1.03 µm. Those lasers have many interesting applications incommunications, clock generation, metrology and life sciences. / <p>QC 20130507</p>
10

On diode-pumped solid-state lasers

Hellström, Jonas January 2007 (has links)
The research that is presented in this thesis can be divided into two major parts. The first part concerns longitudinally pumped, bulk Er-Yb lasers. In these lasers, the main limitation is the thermal shortcomings of the phosphate glass host material. From the laser experiments and the spectroscopic measurements on crystalline host materials, as well as an investigation to bring further light to the physical background of the involved dynamics, the thesis presents some novel results that contribute to the search for a crystalline replacement. The second part concerns novel laser concepts applied to Yb-doped double tungstate lasers. Different crystal orientations are investigated, such as an athermal orientation for reduced thermal lensing and a conical refraction orientation for complete polarization tuning. Furthermore, the introduction of volume Bragg gratings in the cavity enables wide spectral tuning ranges and extremely low quantum defects. Regarding the first part, the main results are the achievement of 15 % slope efficiency in a monolithic, continuous-wave Yb:GdCOB laser and the achievement of Q-switching of the same laser. The Q-switched pulse durations were around 5-6 ns and the Q-switched slope efficiency was 11.6 %. For both lasers, a maximum output power of 90 mW was obtained, which is close to ordinary glass lasers under similar conditions. A spectroscopic investigation into the Er,Yb-codoped double tungstates was also performed and the results have enabled mathematical modeling of the fluorescence dynamics in these materials. Finally, the temperature dependence of the dynamics in Er,Yb:YAG was studied and the results have given some insight into the physical background of the mechanisms involved. Regarding the second part, different end-pumped Yb:KReW laser cavities were constructed to demonstrate the different concepts. With a laser crystal cut for propagation along the athermal direction at 17º angle clockwise from the dielectric direction Nm, the thermal lens could be reduced by 50 %. In these experiments the maximum output power was 4 W at 60 % slope efficiency. In another cavity incorporating a volume Bragg grating in a retroreflector set-up, the wavelength could be continuously tuned between 997 - 1050 nm. The spectral bandwidth was 10 GHz and the peak output power was 3 W. The same output power could also be obtained at 1063 nm with the grating positioned as an output coupler instead. If, on the other hand, the grating was positioned as an input coupler, 3.6 W output power at 998 nm was obtained at a quantum defect of only 1.6 %. Furthermore, using a crystal oriented for propagation along an optic axis, internal conical refraction could be used to establish arbitrary control of the polarization direction as well as the extinction ratio. Even unpolarized light could be enforced despite the highly anisotropic medium. With this configuration, the maximum output power was 8.6 W at 60 % slope efficiency which equals the performance of a reference crystal with standard orientation. The completely novel concepts of laser tuning with Bragg grating retroreflectors, of low quantum defect through Bragg grating input couplers and of polarization tuning by internal conical refraction can all easily be applied to several other laser materials as well. / QC 20100713

Page generated in 0.0344 seconds