• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Condensat de Bose-Einstein dans un piège habillé : modes collectifs d'un superfluide en dimension deux. / Bose-Einstein condensate in a dressed trap : collective modes in a two-dimensional superfluid

Merloti, Karina 11 December 2013 (has links)
Cette thèse présente la production d'un gaz dégénéré de rubidium 87 dans le régime quasibidimensionnel (2D) et l'étude des modes collectifs de ce gaz. Nous montrons que le gaz quasi-2D peut être amené en dessous du seuil de la transition Berezinskii-Kosterlitz-Thouless. Nous montrons le caractère superfluide du gaz dégénéré par la présence des modes quadrupolaire et ciseaux, dont nous mesurons les fréquences d'oscillation. Son caractère bidimensionnel est vérifié par la mesure de la fréquence du mode monopolaire. Nous mettons en évidence l'influence du confinement transverse et de la troisième dimension sur la fréquence de ce mode. Pour produire le superfluide, un condensat de Bose-Einstein est d'abord produit dans un piège quadrupolaire bouché par un faisceau laser très désaccordé et soigneusement optimisé pour réduire les pertes Majorana par renversement de spin. Le condensat est ensuite transféré vers un « piège habillé », c'est-à-dire un potentiel adiabatique dans lequel les atomes sont habillés par un champ radiofréquence. Pour rendre le piège plus anisotrope, le gradient magnétique est augmenté au maximum, ce qui nous permet d'explorer le régime quasi-2D pour le gaz de Bose. Les deux types de piège utilisés sont caractérisés en détail. Nous tirons parti de la souplesse du potentiel adiabatique pour exciter et étudier les modes collectifs. / This thesis presents the production of a degenerate rubidium 87 gas in the quasi two-dimensional (2D) regime and the study of collective modes of this gas. We show that the gas can be prepared below the Berezinskii-Kosterlitz-Thouless transition threshold. The superfluid nature of the gas is demonstrated through the observation of the quadrupole and scissors modes. We measure their oscillation frequencies. The bidimensional character of the gas is evidenced through the measurement of the monopole mode frequency. We show the influence of the third, hidden, dimension on this oscillation frequency. In order to produce the superfluid, a Bose-Einstein condensate is first produced in a magnetic quadrupole trap plugged by a far off-resonance laser beam, carefully optimized to overcome Majorana spin ip losses. The condensate is then transferred to the “ dressed trap “, i.e. the adiabatic potential seen by the radiofrequency dressed atoms. We ramp up the magnetic gradient to its maximum value in order to increase the trap anisotropy, and eventually reach the quasi-2D regime for the Bose gas. The two kinds of trap used are characterized in detail. We take advantage of the adiabatic potential smoothness in order to excite and study the collective modes.
2

Production of a Bose-Einstein condensate of sodium atoms and investigation considering non-linear atom-photon interactions / Producção de um Condensado de Bose-Einstein de átomos de sódio e investigação considerando interações não lineares entre átomos e fótons

Peñafiel, Edwin Eduardo Pedrozo 22 August 2016 (has links)
In this work we constructed an experimental system to realize a BEC of sodium atoms. In the first part of the work, we study two atomic sources in order to choose the most suitable for our system. The comparison between a Zeeman slower and a bidimensional magnetooptical trap (2D-MOT) was performed to evaluate the capacity of producing an appropiate flux of atoms in order to load a tridimensional magneto-optical trap (3D-MOT). The experimental results show that the 2D-MOT is as efficient as the Zeeman slower with the advantage of being more compact and easier to operate, and for these reasons we choose it as our source of cold atoms. After this, the experimental apparatus to produce a Bose-Einstein condensate was constructed and characterized. With this experimental system we realized all the required stages to achieve the Bose-Einstein condensation (BEC). Initially, we characterized and compared the performance between the Bright-MOT and Dark-SPOT MOT of sodium atoms, observing the great advantages this last configuration offers. Afterward, we implemented the experimental sequence for the achivement of the BEC of sodium atoms. After the optical molasses process, the atoms are tranferred to an optically plugged quadrupole trap (OPT) where the process of evaporative cooling is performed. With this setup, we achive a sodium BEC with ∼ 5×105 atoms and a critical temperature of ∼ 1.1 μK. Finally, with the constructed and characterized machine, we started to perform experiments of cooperative absorption of two photons by two trapped atoms. With the new system, we wanted to take advantage of the higher densities in the magnetic trap and BEC to explore some features of this phenomenon in the classical and quantum regimes. We were interested in exploring some features of this nonlinear light-matter interaction effect. The idea of having two or more photons interacting with two or more atoms is the beginning of a new possible class of phenomena that we could call many photons-many body intercation. In this new possibity, photons and atoms will be fully correlated, introducing new aspects of interactions. / Neste trabalho, realizamos a construção de um sistema experimental para a realização de um condensado de Bose-Einstein de átomos de sódio. Na primeira parte do trabalho, realizamos o estudo de duas fontes átomicas com o intuito de escolher a mais adequada para nosso sistema experimental. A comparação foi realizada entre um Zeeman slower e uma armadilha magneto-óptica bidimensional (MOT-2D), que são técnicas usadas para fornecer um grande fluxo de átomos com distribuição de velocidades adequadas para serem capturados numa armadilha magneto-óptica tridimensional (MOT-3D). Os resultados experimentais da caracterização de ambos os sistemas mostra que o MOT-2D oferece um grande fluxo atômico da mesma ordem do Zeeman slower, mas com a vantagem de ser um sistema mais compacto em questão de tamanho, razão pela qual foi escolhido como fonte atômica no nosso sistema. A partir daqui, realizamos a construção do sistema experimental para a realização do condensado de sódio. Inicialmente realizamos o aprisionamento numa MOT-3D, realizando subsequentemente os passos de resfriamento sub-Doppler mediante o processo de molasses ópticas. Depois disto, os átomos são transferidos para uma armadilha magnética, que consiste de um par de bobinas em configuração anti-Helmholtz, as mesmas usadas para a MOT-3D mas com um gradiente de campo magnético ao redor de uma ordem de grandeza maior. Esta armadilha é combinada com um laser com dessintonia para o azul focado a 30 μm no centro da armadilha, onde o campo magnético é zero com o objetivo de evitar as perdas por majorana que acontecem nessa região. Com esta configuração, um condensado de ∼ 5 × 105 átomos é obtido a uma temperatura crítica de ∼ 1.1 μK. Por último, com a máquina construída e caracterizada, começamos re-explorar o experimento de absorção cooperativa de dois fótons por dois átomos aprisionados. Com nosso novo sistema, é possível explorar este efeito no regime clássico e quântico. Estamos interessados em explorar algumas características da interação não linear entre luz e matéria. A ideia de ter dois ou mais fótons interagindo com um ou mais átomos, é possivelmente o começo de uma nova classe de fenômenos que poderíamos chamar de interação de muitos fótons com muitos átomos.
3

Production of a Bose-Einstein condensate of sodium atoms and investigation considering non-linear atom-photon interactions / Producção de um Condensado de Bose-Einstein de átomos de sódio e investigação considerando interações não lineares entre átomos e fótons

Edwin Eduardo Pedrozo Peñafiel 22 August 2016 (has links)
In this work we constructed an experimental system to realize a BEC of sodium atoms. In the first part of the work, we study two atomic sources in order to choose the most suitable for our system. The comparison between a Zeeman slower and a bidimensional magnetooptical trap (2D-MOT) was performed to evaluate the capacity of producing an appropiate flux of atoms in order to load a tridimensional magneto-optical trap (3D-MOT). The experimental results show that the 2D-MOT is as efficient as the Zeeman slower with the advantage of being more compact and easier to operate, and for these reasons we choose it as our source of cold atoms. After this, the experimental apparatus to produce a Bose-Einstein condensate was constructed and characterized. With this experimental system we realized all the required stages to achieve the Bose-Einstein condensation (BEC). Initially, we characterized and compared the performance between the Bright-MOT and Dark-SPOT MOT of sodium atoms, observing the great advantages this last configuration offers. Afterward, we implemented the experimental sequence for the achivement of the BEC of sodium atoms. After the optical molasses process, the atoms are tranferred to an optically plugged quadrupole trap (OPT) where the process of evaporative cooling is performed. With this setup, we achive a sodium BEC with ∼ 5×105 atoms and a critical temperature of ∼ 1.1 μK. Finally, with the constructed and characterized machine, we started to perform experiments of cooperative absorption of two photons by two trapped atoms. With the new system, we wanted to take advantage of the higher densities in the magnetic trap and BEC to explore some features of this phenomenon in the classical and quantum regimes. We were interested in exploring some features of this nonlinear light-matter interaction effect. The idea of having two or more photons interacting with two or more atoms is the beginning of a new possible class of phenomena that we could call many photons-many body intercation. In this new possibity, photons and atoms will be fully correlated, introducing new aspects of interactions. / Neste trabalho, realizamos a construção de um sistema experimental para a realização de um condensado de Bose-Einstein de átomos de sódio. Na primeira parte do trabalho, realizamos o estudo de duas fontes átomicas com o intuito de escolher a mais adequada para nosso sistema experimental. A comparação foi realizada entre um Zeeman slower e uma armadilha magneto-óptica bidimensional (MOT-2D), que são técnicas usadas para fornecer um grande fluxo de átomos com distribuição de velocidades adequadas para serem capturados numa armadilha magneto-óptica tridimensional (MOT-3D). Os resultados experimentais da caracterização de ambos os sistemas mostra que o MOT-2D oferece um grande fluxo atômico da mesma ordem do Zeeman slower, mas com a vantagem de ser um sistema mais compacto em questão de tamanho, razão pela qual foi escolhido como fonte atômica no nosso sistema. A partir daqui, realizamos a construção do sistema experimental para a realização do condensado de sódio. Inicialmente realizamos o aprisionamento numa MOT-3D, realizando subsequentemente os passos de resfriamento sub-Doppler mediante o processo de molasses ópticas. Depois disto, os átomos são transferidos para uma armadilha magnética, que consiste de um par de bobinas em configuração anti-Helmholtz, as mesmas usadas para a MOT-3D mas com um gradiente de campo magnético ao redor de uma ordem de grandeza maior. Esta armadilha é combinada com um laser com dessintonia para o azul focado a 30 μm no centro da armadilha, onde o campo magnético é zero com o objetivo de evitar as perdas por majorana que acontecem nessa região. Com esta configuração, um condensado de ∼ 5 × 105 átomos é obtido a uma temperatura crítica de ∼ 1.1 μK. Por último, com a máquina construída e caracterizada, começamos re-explorar o experimento de absorção cooperativa de dois fótons por dois átomos aprisionados. Com nosso novo sistema, é possível explorar este efeito no regime clássico e quântico. Estamos interessados em explorar algumas características da interação não linear entre luz e matéria. A ideia de ter dois ou mais fótons interagindo com um ou mais átomos, é possivelmente o começo de uma nova classe de fenômenos que poderíamos chamar de interação de muitos fótons com muitos átomos.
4

Laboratorní studium polní iontové emise z prachových zrn / Laboratory Study of Field Ion Emission from Dust Grain

Jeřáb, Martin January 2011 (has links)
Title: Laboratory study of field ion emission from dust grains Author: Martin Jeřáb Department: Department of Surface and Plasma Science Supervisor: Prof. RNDr. Jana Šafránková, DrSc., KFPP Abstract: Dust particles are common objects in space environment. As a dust particles, we call objects with typical sizes of several atoms up to approximately 100 µm. However, a total mass of dust particles is only about 1% of total mass of our galaxy, the presence of dust particles significantly affects environment. The most interesting is dynamics of dust particles and attached dust charging processes. The presented thesis consists of two main parts. The first part deals with the experimental study of field ion emission. Our measurements have been performed using gold and carbon spherical dust grains. It has been found that during the charging of dust particle using ion gun are the primary ions implanted under the surface of the dust particle from where they are release in the form of neutral gas. This releasing of implanted ions affects field ion emission for several hours. The second part of the thesis describes a development of new experimental apparatus determined to the study of photoemission dust charging and con- sequently to the "true" field ion emission study. Keywords: dust, dusty plasmas, charging properties, field...
5

Präzisionsmassebestimmung einzelner Partikel im Femtogrammbereich und Anwendungen in der Oberflächenphysik

Illemann, Jens 03 August 2000 (has links) (PDF)
In this work, a new method for mass determination of single low-charged particles in the sub-picogram regime is developed. It opens applications to chemical physics and surface science via determination of growth rates. The method combines the well-known electrodynamic quadrupole ion trap in a UHV-chamber and fourier transformation of scattered light. The achieved mass resolution of down to $10^{-4}$ at 100 fg mass on a time scale of ten seconds allows a resolution of a few percent of the mass of an adsorbed monolayer and to determine growth rates down to one molecule per second on a time scale of one day. The observation of temperature dependent sticking coefficients results in the measures of the energy of an adsorption barrier. Observation of discrete steps in the rate gives information about the density of molecules in an ordered layer. Temperature dependent desorption data gives the binding energy. The dependence of these observables on the controllable curvature and charge of the substrate's surface is measurable. The first part of this dissertation consists of a description of the common theory of the quadrupole ion trap with the completion of not widely known, newly introduced, contributions to the trapping potential. These contributions lead to systematic shifts in the mass determination. In particular the influence of the inhomogenity of the electrical field, that is used for compensating the gravitational force, is investigated analytically and corroborated experimentally. It is assumed, that the particle's finite size effects in a further shift. In the experimental part initial demonstrative measurements are presented: the time-resolved adsorption of fullerene, anthracene and NO on silica spheres with 500nm diameter has been measured at room temperature. In addition the secondary electron yield of in-situ prepared particles during irradiation with monoenergetic electrons has been determined by analyzing the distribution of change of the number of elementary charges by single events of charging.
6

Präzisionsmassebestimmung einzelner Partikel im Femtogrammbereich und Anwendungen in der Oberflächenphysik

Illemann, Jens 26 July 2000 (has links)
In this work, a new method for mass determination of single low-charged particles in the sub-picogram regime is developed. It opens applications to chemical physics and surface science via determination of growth rates. The method combines the well-known electrodynamic quadrupole ion trap in a UHV-chamber and fourier transformation of scattered light. The achieved mass resolution of down to $10^{-4}$ at 100 fg mass on a time scale of ten seconds allows a resolution of a few percent of the mass of an adsorbed monolayer and to determine growth rates down to one molecule per second on a time scale of one day. The observation of temperature dependent sticking coefficients results in the measures of the energy of an adsorption barrier. Observation of discrete steps in the rate gives information about the density of molecules in an ordered layer. Temperature dependent desorption data gives the binding energy. The dependence of these observables on the controllable curvature and charge of the substrate's surface is measurable. The first part of this dissertation consists of a description of the common theory of the quadrupole ion trap with the completion of not widely known, newly introduced, contributions to the trapping potential. These contributions lead to systematic shifts in the mass determination. In particular the influence of the inhomogenity of the electrical field, that is used for compensating the gravitational force, is investigated analytically and corroborated experimentally. It is assumed, that the particle's finite size effects in a further shift. In the experimental part initial demonstrative measurements are presented: the time-resolved adsorption of fullerene, anthracene and NO on silica spheres with 500nm diameter has been measured at room temperature. In addition the secondary electron yield of in-situ prepared particles during irradiation with monoenergetic electrons has been determined by analyzing the distribution of change of the number of elementary charges by single events of charging.

Page generated in 0.0497 seconds