• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contagem incremental de padrões locais em árvores de componentes para cálculo de atributos / Incremental counting of local patterns in component tree for attribute calculation

Silva, Dênnis José da 26 October 2017 (has links)
Árvore de componentes é uma representação completa de imagens que utiliza componentes conexos dos conjuntos de níveis de uma imagem e a relação de inclusão entre esses componentes. Essas informações possibilitam diversas aplicações em processamento de imagens e visão computacional, e.g. filtros conexos, segmentação, extração de características entre outras. Aplicações que utilizam árvore de componentes geralmente computam atributos que descrevem os componentes conexos representados pelos nós da árvore. Entre esses atributos estão a área, o perímetro e o número de Euler, que podem ser utilizados diretamente ou indiretamente (para o cálculo de outros atributos). Os \"bit-quads\" são padrões de tamanho 2x2 binários que são agrupados em determinados conjuntos e contados em imagens binárias. Embora o uso de \"bit-quads\" resulte em um método rápido para calcular atributos em imagens binárias, o mesmo não ocorre para o cálculo de atributos dos nós de uma árvore de componentes, porque os padrões contados em um nó podem se repetir nos conjuntos de níveis da imagem e serem contados mais de uma vez. A literatura recente propõe uma adaptação dos bit-quads para o cálculo incremental e eficiente do número de buracos na árvore de componentes. Essa adaptação utiliza o fato de cada nó da árvore de componentes representar um único componente conexo e uma das definições do número de Euler para o cálculo do número de buracos. Embora essa adaptação possa calcular o número de Euler, os outros atributos (área e perímetro) não podem ser computados. Neste trabalho é apresentada uma extensão dessa adaptação de bit-quads que permite a contagem de todos os agrupamentos de bit-quads de maneira incremental e eficiente na árvore de componentes. De forma que o método proposto possa calcular todos os atributos que podem ser obtidos pelos bit-quads (além do número de buracos) em imagens binárias na árvore de componentes de maneira incremental. / Component tree is a full image representation which uses the connected components of the level sets of the image and these connected components\' inclusion relationship. This information can be used in various image processing and computational vision applications, e.g. connected filters, segmentation, feature extraction, among others. In general, applications which use component trees compute attributes that describe the connected components represented by the tree nodes. Attributes such as area, perimeter and Euler number, can be used directly or indirectly (when they are used to compute other attributes) to describe the component tree nodes in various applications. The bit-quads are binary patterns of size 2x2 that are grouped in determined sets and counted in binary images to compute area, perimeter (also their continuous approximation) and Euler number. Even though the bit-quads usage can yield an efficient method to compute binary image attributes, they cannot be used efficiently to compute attributes for all component tree nodes, since some bit-quads can be counted more than once over the level sets. An adaptation of the bit-quads has been proposed to compute efficiently and incrementally the number of holes for all component tree nodes. This adaptation uses the fact that each component tree node represents a unique connected component and one of Euler number definitions to compute the number of holes. Even though this adaptation can compute Euler number, it cannot compute other attributes derived from the bit-quads (area and perimeter). In this work, an extension of this adaptation is proposed to efficiently and incrementally count all bit-quads sets in a component tree. Moreover, it yields a method to compute all attributes which can be computed by the bit-quads in binary images in the component tree using an incremental strategy.
2

Contagem incremental de padrões locais em árvores de componentes para cálculo de atributos / Incremental counting of local patterns in component tree for attribute calculation

Dênnis José da Silva 26 October 2017 (has links)
Árvore de componentes é uma representação completa de imagens que utiliza componentes conexos dos conjuntos de níveis de uma imagem e a relação de inclusão entre esses componentes. Essas informações possibilitam diversas aplicações em processamento de imagens e visão computacional, e.g. filtros conexos, segmentação, extração de características entre outras. Aplicações que utilizam árvore de componentes geralmente computam atributos que descrevem os componentes conexos representados pelos nós da árvore. Entre esses atributos estão a área, o perímetro e o número de Euler, que podem ser utilizados diretamente ou indiretamente (para o cálculo de outros atributos). Os \"bit-quads\" são padrões de tamanho 2x2 binários que são agrupados em determinados conjuntos e contados em imagens binárias. Embora o uso de \"bit-quads\" resulte em um método rápido para calcular atributos em imagens binárias, o mesmo não ocorre para o cálculo de atributos dos nós de uma árvore de componentes, porque os padrões contados em um nó podem se repetir nos conjuntos de níveis da imagem e serem contados mais de uma vez. A literatura recente propõe uma adaptação dos bit-quads para o cálculo incremental e eficiente do número de buracos na árvore de componentes. Essa adaptação utiliza o fato de cada nó da árvore de componentes representar um único componente conexo e uma das definições do número de Euler para o cálculo do número de buracos. Embora essa adaptação possa calcular o número de Euler, os outros atributos (área e perímetro) não podem ser computados. Neste trabalho é apresentada uma extensão dessa adaptação de bit-quads que permite a contagem de todos os agrupamentos de bit-quads de maneira incremental e eficiente na árvore de componentes. De forma que o método proposto possa calcular todos os atributos que podem ser obtidos pelos bit-quads (além do número de buracos) em imagens binárias na árvore de componentes de maneira incremental. / Component tree is a full image representation which uses the connected components of the level sets of the image and these connected components\' inclusion relationship. This information can be used in various image processing and computational vision applications, e.g. connected filters, segmentation, feature extraction, among others. In general, applications which use component trees compute attributes that describe the connected components represented by the tree nodes. Attributes such as area, perimeter and Euler number, can be used directly or indirectly (when they are used to compute other attributes) to describe the component tree nodes in various applications. The bit-quads are binary patterns of size 2x2 that are grouped in determined sets and counted in binary images to compute area, perimeter (also their continuous approximation) and Euler number. Even though the bit-quads usage can yield an efficient method to compute binary image attributes, they cannot be used efficiently to compute attributes for all component tree nodes, since some bit-quads can be counted more than once over the level sets. An adaptation of the bit-quads has been proposed to compute efficiently and incrementally the number of holes for all component tree nodes. This adaptation uses the fact that each component tree node represents a unique connected component and one of Euler number definitions to compute the number of holes. Even though this adaptation can compute Euler number, it cannot compute other attributes derived from the bit-quads (area and perimeter). In this work, an extension of this adaptation is proposed to efficiently and incrementally count all bit-quads sets in a component tree. Moreover, it yields a method to compute all attributes which can be computed by the bit-quads in binary images in the component tree using an incremental strategy.
3

Quads im Unfallgeschehen: Unfallforschung kompakt

Gesamtverband der Deutschen Versicherungswirtschaft e. V. 23 April 2021 (has links)
Seit etwa 10 Jahren treten Quads verstärkt auch in Deutschland in Erscheinung. Mittlerweile schätzt man den Bestand auf mehr als 150.000 Fahrzeuge. Dabei findet man die Fahrzeuge nicht mehr nur als Spaßgeräte auf nicht öffentlichem Gelände, sondern auch im Straßenverkehr. Das hat auch Auswirkungen auf die Unfallzahlen. Die Herausforderung für die Analyse besteht darin, die an Unfällen beteiligten Quads zu identifizieren und eine fundierte Aussage über die Relevanz von Unfällen mit Beteiligung von Quads zu treffen.
4

MULTISCALE MODELING OF III-NITRIDE CORE-SHELL SOLAR CELLS

Abdullah, Abdulmuin Mostafa 01 May 2017 (has links)
Multiscale computational simulations are performed to investigate how electronic structure and optical absorption characteristics of recently reported nanostructured III-nitride core-shell MQW solar cells are governed by an intricate coupling of size-quantization, atomicity, and built-in structural and polarization fields. The core computational framework, as available in our in-house QuADS 3-D simulator, is divided into four coupled phases: 1) Geometry construction for the wurtzite lattice having hexagonal crystal symmetry and non-conventional crystal orientations; 2) Structural relaxation and calculation of atomistic strain distributions using the VFF Keating molecular-mechanics model, which employs a conjugate gradient energy minimization scheme; 3) Obtaining the induced polarization and internal potential distributions using a 3-D atomistic Poisson solver; 4) Computing the single-particle electronic structure and optical transition rates using a 10- band sp3 s*-spin tight-binding framework; and 5) Using a TCAD toolkit, study the carrier transport and obtain the device terminal characteristics. Special care was taken in incorporating the nonpolar m-plane crystallographic orientation within the simulator via appropriate lattice vectors, rotational matrices, neighboring atom co-ordinates and sp3-hybridized passivation scheme. Numerical calculations of electronic structure properties are generally based on non-primitive rectangular unit cell. The rectangular geometry approximation is still valid and can be considered even in the presence of strain in nanostructures such as quantum wells, nanowires, and even in self-assembled quantum dots with varying composition. With this approximation, atoms are grouped into traditional unit cells resulting in simpler analysis and better storage scheme, which results in more dynamic and easily debugged algorithms. Note that the contribution of the second-order piezoelectric polarization is small in the nonpolar m-plane structure (as compared to the polar c-plane counterpart) and was neglected in this study. Besides, the spontaneous polarization is non-existent in m-plane structure. The polarization fields are incorporated in the Hamiltonian as an external potential within a non-self-consistent approximation. From the simulations, it is found that, even without the inclusion of any internal fields, the crystal symmetry is lowered compared to ideal geometries, which is due mainly to the fundamental atomicity and interface discontinuities. However, with the inclusion of internal polarization fields, although the symmetry is lowered further, the m-plane structure exhibits a stronger overlap and localization of the wavefunctions, as compared to the c-plane counterpart. Importantly, strain, in the m-plane structure, causes a larger splitting of the topmost valence band and the interband transition probability involving the 4th valence band was found to be highest. Overall, the m-plane structure offers higher spontaneous emission rate and internal quantum efficiency (IQE) as well as an improved fill-factor.
5

Stabilité dynamique des véhicules légers tout-terrain. Nouvelles solutions. Application aux véhicules légers de type quad

Bouton, Nicolas 25 November 2009 (has links) (PDF)
La problématique de cette thèse réside dans l'étude et le maintien de la stabilité dynamique latérale des Véhicules Légers Tout Terrain (VLTT) évoluant en milieu naturel. Elle s'attache plus particulièrement au développement d'indicateurs de risque pour l'aide à la conduite ainsi qu'au développement de systèmes de sécurité actifs dédiés aux VLTT, avec comme cadre expérimental privilégié, l'application à la stabilité latérale des véhicules quadricyles à moteur communément appelés quads. Cette thèse propose des algorithmes de calcul d'un indicateur de risque et de commande globaux, exploitant trois domaines connexes de la robotique : la modélisation, l'observation et la commande. Un modèle dynamique, intégrant les glissements et le comportement du pilote, est d'abord proposé afin de caractériser le renversement latéral de l'engin au travers du calcul et de l'anticipation de Transfert de Charge Latéral (TCL). Des observateurs capables d'estimer en temps réel l'adhérence sont utilisés pour alimenter ce modèle. Enfin une loi commande prédictive permet d'assurer la stabilité latérale de l'engin, validée par de nombreuses expérimentations

Page generated in 0.0441 seconds