Spelling suggestions: "subject:"quantifier elimination"" "subject:"uantifier elimination""
1 |
Combined decision procedures for nonlinear arithmetics, real and complexPassmore, Grant Olney January 2011 (has links)
We describe contributions to algorithmic proof techniques for deciding the satisfiability of boolean combinations of many-variable nonlinear polynomial equations and inequalities over the real and complex numbers. In the first half, we present an abstract theory of Grobner basis construction algorithms for algebraically closed fields of characteristic zero and use it to introduce and prove the correctness of Grobner basis methods tailored to the needs of modern satisfiability modulo theories (SMT) solvers. In the process, we use the technique of proof orders to derive a generalisation of S-polynomial superfluousness in terms of transfinite induction along an ordinal parameterised by a monomial order. We use this generalisation to prove the abstract (“strategy-independent”) admissibility of a number of superfluous S-polynomial criteria important for efficient basis construction. Finally, we consider local notions of proof minimality for weak Nullstellensatz proofs and give ideal-theoretic methods for computing complex “unsatisfiable cores” which contribute to efficient SMT solving in the context of nonlinear complex arithmetic. In the second half, we consider the problem of effectively combining a heterogeneous collection of decision techniques for fragments of the existential theory of real closed fields. We propose and investigate a number of novel combined decision methods and implement them in our proof tool RAHD (Real Algebra in High Dimensions). We build a hierarchy of increasingly powerful combined decision methods, culminating in a generalisation of partial cylindrical algebraic decomposition (CAD) which we call Abstract Partial CAD. This generalisation incorporates the use of arbitrary sound but possibly incomplete proof procedures for the existential theory of real closed fields as first-class functional parameters for “short-circuiting” expensive computations during the lifting phase of CAD. Identifying these proof procedure parameters formally with RAHD proof strategies, we implement the method in RAHD for the case of full-dimensional cell decompositions and investigate its efficacy with respect to the Brown-McCallum projection operator. We end with some wishes for the future.
|
2 |
Some structures interpretable in the ring of continuous semi-algebraic functions on a curvePhillips, Laura Rose January 2015 (has links)
No description available.
|
3 |
Model theory of algebraically closed fields and the Ax-Grothendieck TheoremElmwafy, Ahmed Osama Mohamed Sayed Sayed January 2020 (has links)
>Magister Scientiae - MSc / We introduce the concept of an algebraically closed field with emphasis of the basic model-theoretic
results concerning the theory of algebraically closed fields. One of these nice results about algebraically
closed fields is the quantifier elimination property. We also show that the theory of algebraically closed
field with a given characteristic is complete and model-complete. Finally, we introduce the beautiful
Ax-Grothendieck theorem and an application to it.
|
4 |
Strong conceptual completeness and various stability theoretic results in continuous model theoryAlbert, Jean-Martin January 2010 (has links)
<p>In this thesis we prove a strong conceptual completeness result for first-order continuous logic. Strong conceptual completeness was proved in 1987 by Michael Makkai for classical first-order logic, and states that it is possible to recover a first-order theory T by looking at functors originating from the category Mod(T) of its models. </p> <p> We then give a brief account of simple theories in continuous logic, and give a proof that the characterization of simple theories using dividing holds in continuous structures. These results are a specialization of well established results for thick cats which appear in [Ben03b] and in [Ben03a].</p> <p> Finally, we turn to the study of non-archimedean Banach spaces over non-trivially valued fields. We give a natural language and axioms to describe them, and show that they admit quantifier elimination, and are N0-stable. We also show that the theory of non-archimedean Banach spaces has only one N 1-saturated model in any cardinality. </p> / Thesis / Doctor of Philosophy (PhD)
|
5 |
Spatial problem solving for diagrammatic reasoningBanerjee, Bonny 10 December 2007 (has links)
No description available.
|
6 |
Profile guided hybrid compilation / Compilation hybride guidée pour profilageNunes Sampaio, Diogo 14 December 2016 (has links)
L'auteur n'a pas fourni de résumé en français / The end of chip frequency scaling capacity, due heat dissipation limitations, made manufacturers search for an alternative to sustain the processing capacity growth. The chosen solution was to increase the hardware parallelism, by packing multiple independent processors in a single chip, in a Multiple-Instruction Multiple-Data (MIMD) fashion, each with special instructions to operate over a vector of data, in a Single-Instruction Multiple-Data (SIMD) manner. Such paradigm change, brought to software developer the convoluted task of producing efficient and scalable applications. Programming languages and associated tools evolved to aid such task for new developed applications. But automated optimizations capable of coping with such a new complex hardware, from legacy, single threaded applications, is still lacking.To apply code transformations, either developers or compilers, require to assert that, by doing so, they are not changing the expected comportment of the application producing unexpected results. But syntactically poor codes, such as use of pointer parameters with multiple possible indirections, complex loop structures, or incomplete codes, make very hard to extract application behavior solely from the source code in what is called a static analyses. To cope with the lack of information extracted from the source code, many tools and research has been done in, how to use dynamic analyses, that does application profiling based on run-time information, to fill the missing information. The combination of static and dynamic information to characterize an application are called hybrid analyses. This works advocates for the use of hybrid analyses to be able to optimizations on loops, regions where most of computations are done. It proposes a framework capable of statically applying some complex loop transformations, that previously would be considered unsafe, by assuring their safe use during run-time with a lightweight test.The proposed framework uses application execution profiling to help the static loop optimizer to: 1) identify and classify program hot-spots, so as to focus only on regions vital for the execution time; 2) guide the optimizer in understanding the overall loop behavior, so as to reduce the valid loop transformations search space; 3) using instruction's memory access functions, it statically builds a lightweight run-time test that determine, based on the program parameters values, if a given optimization is safe to be used or not. It's applicability is shown by performing complex loop transformations into a variety of loops, obtained from applications of different fields, and demonstrating that the run-time overhead is insignificant compared to the loop execution time or gained performance, in the vast majority of cases.
|
7 |
Studium aritmetických struktur a teorií s ohledem na reprezentační a deskriptivní analýzu / Study of Arithmetical Structures and Theories with Regard to Representative and Descriptive AnalysisGlivický, Petr January 2013 (has links)
of doctoral thesis Study of Arithmetical Structures and Theories with Regard to Representative and Descriptive Analysis Petr Glivický We are motivated by a problem of understanding relations between local and global properties of an operation o in a structure of the form B, o , with regard to an application for the study of models B, · of Peano arithmetic, where B is a model of Presburger arithmetic. We are particularly interested in a dependency problem, which we formulate as the problem of describing the dependency closure iclO (E) = {d ∈ Bn ; (∀o, o ∈ O)(o E = o E ⇒ o(d) = o (d))}, where B is a structure, O a set of n-ary operations on B, and E ⊆ Bn. We show, that this problem can be reduced to a definability question in certain expansion of B. In particular, if B is a saturated model of Presburger arithmetic, and O is the set of all (saturated) Peano products on B, we prove that, for a ∈ B, iclO ({a}×B) is the smallest possible, i.e. it contains just those pairs (d0, d1) ∈ B2 for which at least one of di equals p(a), for some polynomial p ∈ Q[x]. We show that the presented problematics is closely connected to the descriptive analysis of linear theories. That are theories, models of which are - up to a change of the language - certain discretely ordered modules over specific discretely ordered...
|
8 |
A Quest for Exactness: Program Transformation for Reliable Real NumbersNeron, Pierre 04 October 2013 (has links) (PDF)
Cette thèse présente un algorithme qui élimine les racines carrées et les divi- sions dans des programmes sans boucles, utilisés dans des systèmes embarqués, tout en préservant la sémantique. L'élimination de ces opérations permet d'éviter les erreurs d'arrondis à l'exécution, ces erreurs d'arrondis pouvant entraîner un comportement complètement inattendu de la part du programme. Cette trans- formation respecte les contraintes du code embarqué, en particulier la nécessité pour le programme produit de s'exécuter en mémoire fixe. Cette transformation utilise deux algorithmes fondamentaux développés dans cette thèse. Le premier permet d'éliminer les racines carrées et les divisions des expressions booléennes contenant des comparaisons d'expressions arithmétiques. Le second est un algo- rithme qui résout un problème d'anti-unification particulier, que nous appelons anti-unification contrainte. Cette transformation de programme est définie et prou- vée dans l'assistant de preuves PVS. Elle est aussi implantée comme une stratégie de ce système. L'anti-unification contrainte est aussi utilisée pour étendre la transformation à des programmes contenant des fonctions. Elle permet ainsi d'éliminer les racines carrées et les divisions de spécifications écrites en PVS. La robustesse de cette méthode est mise en valeur par un exemple conséquent: l'élimination des racines carrées et des divisions dans un programme de détection des conflits aériens.
|
9 |
Formalisations en Coq pour la décision de problèmes en géométrie algébrique réelle / Coq formalisations for deciding problems in real algebraic geometryDjalal, Boris 03 December 2018 (has links)
Un problème de géométrie algébrique réelle s'exprime sous forme d’un système d’équations et d’inéquations polynomiales, dont l’ensemble des solutions est un ensemble semi-algébrique. L'objectif de cette thèse est de montrer comment les algorithmes de ce domaine peuvent être décrits formellement dans le langage du système de preuve Coq.Un premier résultat est la définition formelle et la certification de l’algorithme de transformation de Newton présentée dans la thèse d'A. Bostan. Ce travail fait intervenir non seulement des polynômes, mais également des séries formelles tronquées. Un deuxième résultat est la description d'un type de donnée représentant les ensembles semi-algébriques. Un ensemble semialgébrique est représenté par une formule logique du premier ordre basée sur des comparaisons entre expressions polynomiales multivariées. Pour ce type de données, nous montrons comment obtenir les différentes opérations ensemblistes et allons jusqu'à décrire les fonctions semi-algébriques. Pour toutes ces étapes, nous fournissons des preuves formelles vérifiées à l'aide de Coq. Enfin, nous montrons également comment la continuité des fonctions semi-algébrique peut être décrite, mais sans en fournir une preuve formelle complète. / A real algebraic geometry problem is expressed as a system of polynomial equations and inequalities, and the set of solutions are semi-algebraic sets. The objective of this thesis is to show how the algorithms of this domain can be formally described in the language of the Coq proof system. A first result is the formal definition and certification of the Newton transformation algorithm presented in A. Bostan's thesis. This work involves not only polynomials, but also truncated formal series. A second result is the description of a data type representing semi-algebraic sets. A semi-algebraic set is represented by a first-order logical formula based on comparisons between multivariate polynomial expressions. For this type of data, we show how to obtain the different set operations all the way to describing semialgebraic functions. For all these steps, we provide formal proofs verified with Coq. Finally, we also show how the continuity of semi-algebraic functions can be described, but without providing a fully formalized proof.
|
Page generated in 0.1347 seconds