• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caractérisation du microbiote tumoral influençant la réponse immunitaire et de son importance pronostique dans le cancer du sein

Boily, Nicolas 08 1900 (has links)
No description available.
12

Odlišení primárně mediastinálního a difuzního velkobuněčného B-lymfomu s využitím metody real-time kvantitativní polymerázové řetězové reakce / Distinguishing of primary mediastinal B-cell lymphoma and diffuse large B-cell lymphoma with real-time quantitative polymerase chain reaction

Votavová, Hana January 2011 (has links)
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. It is a molecular and prognostic heterogeneous disease. Three main genetic subtypes are called germinal center-like DLBCL (GC-like DLBCL), non-germinal center-like DLBCL (nonGC-like DLBCL) and primary mediastinal B-cell lymphoma (PMBL). These subtypes can be reliably distinguished only with usage of gene expression profiling (GEP). The GEP method can be applied only when fresh frozen tissue is available. The method is technically difficult and expensive. Thus, it is not used routinely. Since the DLBCL subtypes differ in prognosis, it is extremely important to be able to distinguish them. The presented thesis is focused on distinguishing of PMBL diagnosis in the group of DLBCL. Easily stored formalin-fixed, paraffin-embedded tissue (FFPE) and gene expression analysis using real-time quantitative polymerase chain reaction (RTqPCR) are used. In the first step, PMBL and DLBCL cases were distinguished with an internationally accepted clinical-pathological method. The agreement between clinical-pathological diagnosis and GEP is only 76%. In the presented text a genetic algorithm for PMBL/DLBCL distinguishing is suggested. It uses three carefully chosen genes and their expression is measured with RTqPCR. Both, the...
13

Odlišení primárně mediastinálního a difuzního velkobuněčného B-lymfomu s využitím metody real-time kvantitativní polymerázové řetězové reakce / Distinguishing of primary mediastinal B-cell lymphoma and diffuse large B-cell lymphoma with real-time quantitative polymerase chain reaction

Votavová, Hana January 2011 (has links)
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. It is a molecular and prognostic heterogeneous disease. Three main genetic subtypes are called germinal center-like DLBCL (GC-like DLBCL), non-germinal center-like DLBCL (nonGC-like DLBCL) and primary mediastinal B-cell lymphoma (PMBL). These subtypes can be reliably distinguished only with usage of gene expression profiling (GEP). The GEP method can be applied only when fresh frozen tissue is available. The method is technically difficult and expensive. Thus, it is not used routinely. Since the DLBCL subtypes differ in prognosis, it is extremely important to be able to distinguish them. The presented thesis is focused on distinguishing of PMBL diagnosis in the group of DLBCL. Easily stored formalin-fixed, paraffin-embedded tissue (FFPE) and gene expression analysis using real-time quantitative polymerase chain reaction (RTqPCR) are used. In the first step, PMBL and DLBCL cases were distinguished with an internationally accepted clinical-pathological method. The agreement between clinical-pathological diagnosis and GEP is only 76%. In the presented text a genetic algorithm for PMBL/DLBCL distinguishing is suggested. It uses three carefully chosen genes and their expression is measured with RTqPCR. Both, the...
14

IL-17A induced response and synergy with otherproinflammatory cytokines in human endothelial cells

Salin, Julia January 2021 (has links)
Cardiovascular diseases are a broad group of diseases, such as heart attack and heart failureaffecting the cardiovascular system. The primary cause of cardiovascular diseases isatherosclerosis, and its progression is brought about by oxidative stress and a complex chronicinflammation reaction cascade. Of central importance are proinflammatory cytokines, regulatedby multiple factors, including interleukin (IL) 17A. This project aims to investigate the effectof IL-17A on the inflammatory response of human vascular endothelial cells by quantifyingchemokine C-X-C motif ligand-1 (CXCL1) release when exposed or not to otherproinflammatory mediators such as TNF-𝛼, IL-6 and IL-1β. To investigate this, humanumbilical cord endothelial cells were cultured and then stimulated with IL-17A alone or incombination with other cytokines, namely IL-6/sIL6R, IL-1β, or TNF-𝛼. After an appropriateincubation time following the stimulations, the supernatants of the cells were collected, and theamount of CXCL1 was analysed with ELISA or qPCR, respectively. At a lower concentration(10ng/ml), IL-17A failed to induce a significant level of CXCL1 release from endothelial cells.However, IL-17A + TNF-𝛼 (5ng/ml) greatly enhanced, higher than inductions from individualtreatments combined, level of CXCL1 release from endothelial cells. Furthermore, combiningIL-17A with IL-1β or IL-6 induced non-abundant and abundant upregulation in CXCL1 release,respectively. On transcription level, the amount of CXCL1 mRNA induced by IL-17A alonewas non-significant, but stimulation with TNF-𝛼 and IL-17A + TNF-𝛼 induced significantlyupregulated expression of CXCL1. In conclusion, we found that IL-17A induced synergeticrelease of CXCL1 in human vascular endothelial cells with TNF-𝛼. In addition, the synergisticimpact of IL-17A and TNF-𝛼 in terms of CXCL1 induction in vascular endothelial cells wasevident on a transcriptional level. Our data imply that combined blockage of IL-17A and TNF-𝛼 could have an enhanced therapeutic effect on vascular inflammation.

Page generated in 0.1577 seconds