Spelling suggestions: "subject:"kuantum group"" "subject:"kuantum croup""
1 |
Representation theory of quantised function algebras at roots of unityGordon, Iain January 1998 (has links)
No description available.
|
2 |
Categorification of quantum sl_3 projectors and the sl_3 Reshetikhin-Turaev invariant of framed tanglesRose, David Emile Vatcher January 2012 (has links)
<p>Quantum sl_3 projectors are morphisms in Kuperberg's sl_3 spider, a diagrammatically defined category equivalent to the full pivotal subcategory of the category of (type 1) finite-dimensional representations of the quantum group U_q (sl_3 ) generated by the defining representation, which correspond to projection onto (and then inclusion from) the highest weight irreducible summand. These morphisms are interesting from a topological viewpoint as they allow the combinatorial formulation of the sl_3 tangle invariant (in which tangle components are labelled by the defining representation) to be extended to a combinatorial formulation of the invariant in which components are labelled by arbitrary finite-dimensional irreducible representations. They also allow for a combinatorial description of the SU(3) Witten-Reshetikhin-Turaev 3-manifold invariant. </p><p>There exists a categorification of the sl_3 spider, due to Morrison and Nieh, which is the natural setting for Khovanov's sl_3 link homology theory and its extension to tangles. An obvious question is whether there exist objects in this categorification which categorify the sl_3 projectors. </p><p>In this dissertation, we show that there indeed exist such "categorified projectors," constructing them as the stable limit of the complexes assigned to k-twist torus braids (suitably shifted). These complexes satisfy categorified versions of the defining relations of the (decategorified) sl_3 projectors and map to them upon taking the Grothendieck group. We use these categorified projectors to extend sl_3 Khovanov homology to a homology theory for framed links with components labeled by arbitrary finite-dimensional irreducible representations of sl_3 .</p> / Dissertation
|
3 |
Paths and tableaux descriptions of Jacobi-Trudi determinant associated with quantum affine algebra of type C_nNAKAI, Wakako, NAKANISHI, Tomoki, 中西, 知樹 18 July 2007 (has links) (PDF)
2000 Mathematics Subject Classification: 17B37; 05E15
|
4 |
Factorizable Module Algebras, Canonical Bases, and ClustersSchmidt, Karl 06 September 2018 (has links)
The present dissertation consists of four interconnected projects. In the first, we introduce and study what we call factorizable module algebras. These are $U_q(\mathfrak{g})$-module algebras $A$ which factor, potentially after localization, as the tensor product of the subalgebra $A^+$ of highest weight vectors of $A$ and a copy of the quantum coordinate algebra $\mathcal{A}_q[U]$, where $U$ is a maximal unipotent subgroup of $G$, a semisimple Lie group whose Lie algebra is $\mathfrak{g}$.
The class of factorizable module algebras is surprisingly rich, in particular including the quantum coordinate algebras $\mathcal{A}_q[Mat_{m,n}]$, $\mathcal{A}_q[G]$ and $\mathcal{A}_q[G/U]$. It is closed under the braided tensor product and, moreover, the subalgebra $A^+$ of each such $A$ is naturally a module algebra over the quantization of $\mathfrak{g}^*$, the Lie algebra of the Poisson dual group $G^*$.
The aforementioned examples of factorizable module algebras all possess dual canonical bases which behave nicely with respect to factorization $A=A^+\otimes \mathcal{A}_q[U]$. We expect the same is true for many other members of this class, including braided tensor products of such. To facilitate such a construction in tensor products, we propose an axiomatic framework of based modules which, in particular, vastly generalizes Lusztig's notion of based modules. We argue that all of the aforementioned $U_q(\mathfrak{g})$-module algebras (and many others) with their dual canonical bases are included, along with their tensor products.
One of the central objects of study emerging from our generalization of Lusztig's based modules is a new (very canonical) basis $\mathcal{B}^{\diamond n}$ in the $n$-th braided tensor power $\mathcal{A}_q[G/U]$. We argue (yet conjecturally) that $\mathcal{A}_q[G/U]^{\underline{\otimes}n}$ has a quantum cluster structure and conjecture that the expected cluster structure structure on $\mathcal{A}_q[G/U]^{\underline{\otimes}n}$ is completely controlled by the real elements of our canonical basis $\mathcal{B}^{\diamond n}$.
Finally, in order to partially explain the monoidal structures appearing above, we provide an axiomatic framework to construct examples of bialgebroids of Sweedler type. In particular, we describe a bialgebroid structure on $\mathfrak{u}_q(\mathfrak{g})\rtimes\mathbb{Q} C_2$, where $\mathfrak{u}_q(\mathfrak{g})$ is the small quantum group and $C_2$ is the cyclic group of order two.
This dissertation contains previously published co-authored material.
|
5 |
An Invariant of Links on Surfaces via Hopf Algebra BundlesBorland, Alexander I. January 2017 (has links)
No description available.
|
6 |
Affine super Yangians and rectangular W-superalgebras / アファインスーパーヤンギアンと長方形Wスーパー代数Ueda, Mamoru 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23683号 / 理博第4773号 / 新制||理||1684(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 荒川 知幸, 教授 玉川 安騎男, 教授 並河 良典 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
7 |
Äußere Algebren, de-Rham-Kohomologie und Hodge-Zerlegung für QuantengruppenSchüler, Axel 30 January 2017 (has links) (PDF)
In dieser Arbeit wird die de-Rham-Kohomologie für die Quantengruppen zu den vier klassischen Serien von Lie-Gruppen bestimmt und es wird der Hodgeschen Zerlegungssatz gezeigt. Als entscheidendes Mittel wurde der Laplace-Beltrami-Operator L für Woronowicz’ äußere Algebren entwickelt. Für transzendente Werte von q und reguläre Kalkülparameter z ist L diagonalisierbar.
Für die obigen Quantengruppen bestimmen wir die Eigenwerte von L, die neben q und z von zwei integralen dominanten Gewichten abhängen.
Wie im klassischen Fall wird die de-Rham-Kohomologie durch harmonische Formen repräsentiert.
Jedoch entspricht nur im Fall der A-Serie jeder harmonischen Form auch eine de-Rham-Kohomologieklasse. Im Falle der B-, C- und D-Serien sind biinvariante Formen nicht notwendig geschlossen. Es gilt aber, dass jede biinvariante Form harmonisch ist.
Das zweite Hauptresultat ist die Hodge-Zerlegung für die Quantengruppen GLq(N) und SLq(N): Ist der Kalkülparameter z regulär, so lässt sich jede Form eindeutig zerlegen in die Summe aus einem Rand, einem Korand und einem Kohomologierepräsentanten. Ferner gilt, analog zum klassischen Fall, dass die folgenden drei Formenräume übereinstimmen: die biinvarianten Formen, die harmonischen Formen und die de-Rham-Kohomologie. Für die orthogonalen und symplektischen Quantengruppen gibt es keine vollständige Hodge-Zerlegung. Nur für die Elemente, die im Bild des Laplace-Beltrami-Operators liegen, gibt es eine eindeutige Zerlegung in Rand und Korand. Für die Standardkalküle auf den Quantengruppen GLq(N) und SLq(N) wird die Größe von Woronowicz’ äußerer Algebra bestimmt. Es wird gezeigt, dass der Raum der linksinvarianten k-Formen (N² über k)-dimensional ist. Die Algebra der biinvarianten Formen ist graduiert kommutativ. Ihre Poincaré-Reihe ist (1+t)(1+t³) ... (1+t^(2N-1)). Biinvariante Formen sind geschlossen. / Consider one of the standard bicovariant first order differential calculi for
the quantum groups GLq(N), SLq(N), SOq(N), or SPq(N), where q is a
transcendental complex number. It is shown that the de Rham cohomology
of Woronowicz' external algebra coincides with the de Rham cohomologies of its left-invariant, its right-invariant and its bi-invariant subcomplexes. In the cases GLq(N) and SLq(N), the cohomology ring is isomorphic to the left-invariant external algebra and to the vector space of harmonic forms. We prove a Hodge decomposition theorem in these cases. The main technical tool is the spectral decomposition of the quantum Laplace-Beltrami operator.
As in the classical case all three spaces of differential forms coincide: bi-
invariant forms, harmonic forms and the de-Rham-cohomology. For orthog-
onal and symplectic quantum groups there is no complete Hodge decompo-
sition. In case of the standard calculi on the quantum groups GLq(N) and
SLq(N), the size of exterior algebra is computed. The space of left-invariant k-forms has dimension C(N², k) (binomial coefficient). The algebra of bi-invariant forms is graded commutative with Poincaré series (1+t)(1+t³) ... (1+t^(2N-1)). Bi-invariant forms are closed.
|
8 |
C*-quantum groups with projectionRoy, Sutanu 26 September 2013 (has links)
No description available.
|
9 |
Non-commutative generalization of some probabilistic results from representation theory / Généralisation non-commutative de résultats probabilistes en théorie des représentationsTarrago, Pierre 17 November 2015 (has links)
Le sujet de cette thèse est la généralisation non-commutative de résultats probabilistes venant de la théorie des représentations. Les résultats obtenus se divisent en trois parties distinctes. Dans la première partie de la thèse, le concept de groupe quantique easy est étendu au cas unitaire. Tout d'abord, nous donnons une classification de l'ensemble des groupes quantiques easy unitaires dans le cas libre et classique. Nous étendons ensuite les résultats probabilistes de au cas unitaire. La deuxième partie de la thèse est consacrée à une étude du produit en couronne libre. Dans un premier temps, nous décrivons les entrelaceurs des représentations dans le cas particulier d'un produit en couronne libre avec le groupe symétrique libre: cette description permet également d'obtenir plusieurs résultats probabilistes. Dans un deuxième temps, nous établissons un lien entre le produit en couronne libre et les algèbres planaires: ce lien mène à une preuve d'une conjecture de Banica et Bichon. Dans la troisième partie de la thèse, nous étudions un analoque du graphe de Young qui encode la structure multiplicative des fonctions fondamentales quasi-symétriques. La frontière minimale de ce graphe a déjà été décrite par Gnedin et Olshanski. Nous prouvons que la frontière minimale coïncide avec la frontière de Martin. Au cours de cette preuve, nous montrons plusieurs résultats combinatoires asymptotiques concernant les diagrammes de Young en ruban / The subject of this thesis is the non-commutative generalization of some probabilistic results that occur in representation theory. The results of the thesis are divided into three different parts. In the first part of the thesis, we classify all unitary easy quantum groups whose intertwiner spaces are described by non-crossing partitions, and develop the Weingarten calculus on these quantum groups. As an application of the previous work, we recover the results of Diaconis and Shahshahani on the unitary group and extend those results to the free unitary group. In the second part of the thesis, we study the free wreath product. First, we study the free wreath product with the free symmetric group by giving a description of the intertwiner spaces: several probabilistic results are deduced from this description. Then, we relate the intertwiner spaces of a free wreath product with the free product of planar algebras, an object which has been defined by Bisch and Jones. This relation allows us to prove the conjecture of Banica and Bichon. In the last part of the thesis, we prove that the minimal and the Martin boundaries of a graph introduced by Gnedin and Olshanski are the same. In order to prove this, we give some precise estimates on the uniform standard filling of a large ribbon Young diagram. This yields several asymptotic results on the filling of large ribbon Young diagrams
|
10 |
Klassifikation von bikovarianten Differentialkalkülen auf QuantengruppenSchüler, Axel 09 February 2017 (has links) (PDF)
Unter der Voraussetzung, dass q keine Einheitswurzel ist und dass die Differentiale duij der Fundamentalmatrix den Linksmodul der 1-Formen erzeugen, werden die bikovarianten Differentialkalküle auf den Quantengruppen SLq(N), Oq(N) und Spq(N) klassifiziert. Es wird gezeigt, dass es auf den Quantengruppen SLq(N), N ≥ 3, abgesehen von eindimensionalen Kalkülen und endlich vielen Werten von q genau 2N bikovariante Differentialkalküle gibt. Diese Kalküle haben die Dimension N².
Für die Quantengruppen Oq(N) und Spq(N), N ≥ 3, gibt es unter den genannten Voraussetzungen bis auf endlich viele Werte von q genau zwei bikovariante Differentialkalküle der Dimension N². Die Bimodulstruktur der Kalküle sowie die zugeordneten ad-invarianten Rechtsideale werden explizit angegeben. Für die Quantengruppen SLq(N), N ≥ 3, wird gezeigt, dass es, sofern q keine Einheitwurzel ist, genau 2N² + 2N bikovariante Bimoduln vom Typ (u^c u; f) gibt. / If q is not a root of unity and under the assumption that the differentials duij of the fundamental matrix (uij) generate the left module of 1-forms, all bicovariant differential calculi on quantum groups SLq(N), Oq(N) and Spq(N) are classified. It is shown that on quantum groups SLq(N), N ≥ 3, except of 1-dimensional calculi and finitely many values of q, thre are exactly 2N bicovariant differential calculi. The space of invariant forms has dimension N².
For quantum groups Oq(N) and Spq(N), N ≥ 3, under the same assumptions and up to finitely many values of q, there are exactly two bicovariant differential calculi of dimension N². The bimodule structure of the calculi as well as the corresponding ad-invariant right ideals are explicitely described. For quantum groups SLq(N), N ≥ 3, there are exactly 2N² + 2N bicovariant
bimodules of type (u^c u; f) provided q is not a root of unity.
|
Page generated in 0.0582 seconds