• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 190
  • 77
  • 26
  • 22
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 449
  • 449
  • 154
  • 100
  • 95
  • 93
  • 79
  • 77
  • 75
  • 62
  • 59
  • 53
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Experiments with Generalized Quantum Measurements and Entangled Photon Pairs

Biggerstaff, Devon January 2009 (has links)
This thesis describes a linear-optical device for performing generalized quantum measurements on quantum bits (qubits) encoded in photon polarization, the implementation of said device, and its use in two diff erent but related experiments. The device works by coupling the polarization degree of freedom of a single photon to a `mode' or `path' degree of freedom, and performing a projective measurement in this enlarged state space in order to implement a tunable four-outcome positive operator-valued measure (POVM) on the initial quantum bit. In both experiments, this POVM is performed on one photon from a two-photon entangled state created through spontaneous parametric down-conversion. In the fi rst experiment, this entangled state is viewed as a two-qubit photonic cluster state, and the POVM as a means of increasing the computational power of a given resource state in the cluster-state model of quantum computing. This model traditionally achieves deterministic outputs to quantum computations via successive projective measurements, along with classical feedforward to choose measurement bases, on qubits in a highly entangled resource called a cluster state; we show that `virtual qubits' can be appended to a given cluster by replacing some projective measurements with POVMs. Our experimental demonstration fully realizes an arbitrary three-qubit cluster computation by implementing the POVM, as well as fast active feed-forward, on our two-qubit photonic cluster state. Over 206 diff erent computations, the average output delity is 0.9832 +/- 0.0002; furthermore the error contribution from our POVM device and feedforward is only of order 10^-3, less than some recent thresholds for fault-tolerant cluster computing. In the second experiment, the POVM device is used to implement a deterministic protocol for remote state preparation (RSP) of arbitrary photon polarization qubits. RSP is the act of preparing a quantum state at a remote location without actually transmitting the state itself. We are able to remotely prepare 178 diff erent pure and mixed qubit states with an average delity of 0.995. Furthermore, we study the the fidelity achievable by RSP protocols permitting only classical communication, without shared entanglement, and compare the resulting benchmarks for average fidelity against our experimental results. Our experimentally-achieved average fi delities surpass the classical thresholds whenever classical communication alone does not trivially allow for perfect RSP.
82

On single-crystal solid-state NMR based quantum information processing

Moussa, Osama January 2010 (has links)
Quantum information processing devices promise to solve some problems more efficiently than their classical counterparts. The source of the speedup is the structure of quantum theory itself. In that sense, the physical units that are the building blocks of such devices are its power. The quest then is to find or manufacture a system that behaves according to quantum theory, and yet is controllable in such a way that the desired algorithms can be implemented. Candidate systems are benchmarked against general criteria to evaluate their success. In this thesis, I advance a particular system and present the progress made towards each of these criteria. The system is a three-qubit 13C solid-state nuclear magnetic resonance (NMR) based quantum processor. I report results concerning system characterization and control, pseudopure state preparation, and quantum error correction. I also report on using the system to test a central question in the foundation of quantum mechanics.
83

Towards InAs nanowire double quantum dots for quantum information processing

Fung, Jennifer Sy-Wei January 2010 (has links)
Currently, a major challenge for solid-state spin qubit systems is achieving one-qubit operations on a timescale shorter than the spin coherence time, T2*, a goal currently two orders of magnitude away. By taking advantage of the quasi-one-dimensional structure of a nanowire and the strong spin-orbit interaction of InAs, it is estimated that π-rotations can be implemented using electric dipole spin resonance on the order of 10 ns. To this end, a procedure for the fabrication of homogeneous InAs nanowire quantum dot devices is presented herein for future investigations of solid state spin qubits as a test bed for quantum computing. Both single and double quantum dot systems are formed using local gating of InAs nanowires. Single quantum dot systems were characterized through electron transport measurements in a dilution refrigerator; in one case, the charging energy was measured to be 5.0 meV and the orbital energy was measured to be 1.5-3.5 meV. The total capacitance of the single quantum dot system was determined to be approximately 30 aF. An estimate of the quantum dot geometry resulting from confinement suggests that the quantum dot is approximately 115 nm long. The coupling energy of the double quantum dot system was measured to be approximately 4.5 meV. The electron temperature achieved with our circuitry in the dilution refrigerator is estimated to be approximately 125 mK.
84

Entanglement quantification and quantum benchmarking of optical communication devices

Killoran, Nathan January 2012 (has links)
In this thesis, we develop a number of operational tests and tools for benchmarking the quantum nature of optical quantum communication devices. Using the laws of quantum physics, ideal quantum devices can fundamentally outperform their classical counterparts, or even achieve objectives which are classically impossible. Actual devices will not be ideal, but they may still be capable of facilitating quantum communication. Benchmarking tests, based on the presence of entanglement, can be used to verify whether or not imperfect quantum devices offer any advantage over their classical analogs. The general goal in this thesis is to provide strong benchmarking tools which simultaneously require minimal experimental resources but also offer a wide range of applicability. Another major component is the extension of existing qualitative benchmarks (`Is it quantum or classical?') to more quantitative forms (`How quantum is it?'). We provide a number of benchmarking results applicable to two main situations, namely discrete remote state preparation protocols and continuous-variable quantum device testing. The theoretical tools derived throughout this thesis are also applied to the tasks of certifying a remote state preparation experiment and a continuous-variable quantum memory.
85

Scalable Optical MEMS Technology for Quantum Information Processing

Knoernschild, Caleb January 2011 (has links)
<p>Among the various physical systems considered for scalable quantum information processing (QIP), individually trapped ions or neutral atoms have emerged as promising candidates. Recent experiments using these systems have demonstrated the basic building blocks required for a useful quantum computer. In many of these experiments, precisely tuned lasers control and manipulate the quantum bit (qubit) represented in the electronic energy levels of the ion or atom. Scaling these systems to the necessary number of qubits needed for meaningful calculations, requires the development of scalable optical technology capable of delivering laser resources across an array of ions or atoms. That scalable technology is currently not available.</p><p>In this dissertation, I will report on the development, design, characterization, and implementation of an optical beam steering system utilizing microelectromechanical systems (MEMS) technology. Highly optimized micromirrors enable fast reconfiguration of multiple laser beam paths which can accommodate a range of wavelengths. Employing micromirrors with a broadband metallic coating, our system has the flexibility to simultaneously control multiple beams covering a wide range of wavelengths. </p><p>The reconfiguration of two independent beams at different wavelengths (780 and 635 nm) across a common 5x5 array of target sites is reported along with micromirror switching times as fast as 4 us. The optical design of the system minimizes residual intensity at neighboring sites to less than 40 dB below the peak intensity. Integration of a similar system into a neutral atom QIP experiment is reported where 5 individually trapped atoms are selectively manipulated through single qubit rotations with a single laser source. This demonstration represents the first application of MEMS technology in scalable QIP laser addressing.</p> / Dissertation
86

Theory of Light - Atomic Ensemble Interactions: Entanglement, Storage, and Retrieval

Jenkins, Stewart David 27 September 2006 (has links)
In this thesis, we explore the quantum dynamics of light interactions with optically thick collections of atoms. We provide a theoretical description of several recent experiments in which some key operations necessary for the implementation of quantum communication networks are demonstrated. Collective Raman scattering from an atomic ensemble is shown to produce probabilistic entanglement between the polarization of a scattered photon and an associated collective atomic excitation. The predicted correlations agree with experimental observations. We also propose a method to use cascade transitions to produce entanglement between a photon with a frequency in the telecom range (ideal for transmission over optical fibers) and a near infrared photon (ideal for storage in an atomic ensemble), and a description of the experimental demonstration is provided. We also propose and describe the implementation of a deterministic source of single photons. In addition, we generalize the theory of dark-state polaritons in ensembles of three level Lambda atoms to account for the nuclear spin degeneracy of alkali atoms. This generalized theory provides a description of the first demonstration of single photon storage and retrieval from atomic ensembles. Additionally, in the presence of a uniform magnetic field, we predict the occurrence of collapses and revivals of the photon retrieval efficiency as a function of storage time within the ensemble. These predictions are in very good agreement with subsequent experimental observations. We also exploit the ability of photon storage to entangle remote atomic qubits.
87

Landauer Erasure For Quantum Systems

Aksak, Cagan 01 September 2009 (has links) (PDF)
Maxwell&rsquo / s thought experiment on a demon performing microscopic actions and violating the second law of thermodynamics has been a challenging paradox for a long time. It is finally resolved in the seventies and eighties by using Landauer&rsquo / s principle, which state that erasing information is necessarily accompanied with a heat dumped to the environment. The purpose of this study is to describe the heat dumped to the environment associated with erasure operations on quantum systems. To achieve this, first a brief introduction to necessary tools like density matrix formalism, quantum operators and entropy are given. Second, the Maxwell&rsquo / s demon and Szilard model is described. Also the connection between information theory and physics is discussed via this model. Finally, heat transfer operators associated with quantum erasure operations are defined and all of their properties are obtained.
88

Coherent effects in atomic and molecular media: applications to anthrax detection and quantum information

Sariyanni, Zoe-Elizabeth 30 October 2006 (has links)
In the present quantum optics and laser physics study, the non-linear interaction of electromagnetic fields with atomic, molecular and biomolecular media is analyzed. Particular emphasis is given to coherent phenomena, while propagation and dispersion effects are also extensively investigated. The fields involved vary from ultra short pulses to continuous waves; while their energies range from the very strong that are addressed classically, to the very weak which are described quantum mechanically. Applications and problems addressed span a wide range. A scheme for a real time detector of chemical and biological hazards, like anthrax spores, is presented; in it, a strong spectroscopic signature is obtained from complex molecules by using ultrashort, femtosecond, laser pulses and inducing vibrational coherence on them. Furthermore, a way of reversing the phase matching condition in coherent spectroscopy, based on dispersion, is developed; which allows for the use of such spectroscopic methods in remote detection. More fundamental questions addressed include a resolution of the centennial old paradox of Maxwell's demon via quantum thermodynamics, and the role of atomic coherence in enhancing the efficiency of a heat engine as well as in obtaining lasing without population inversion. Additionally, a quantum storage scheme is presented, in which the information contained in an optical pulse is stored and restored via photon echoes.
89

The experimental realization of long-lived quantum memory

Zhao, Ran 03 August 2010 (has links)
Quantum communication between two remote locations often involves remote parties sharing an entangled quantum state. At present, entanglement distribution is usually performed using photons transmitted through optical fibers. However, the absorption of light in the fiber limits the communication distances to less than 200 km, even for optimal photon telecom wavelengths. To increase this distance, the quantum repeater idea was proposed. In the quantum repeater architecture, one divides communication distance into segments of the order of the attenuation length of the photons and places quantum memory nodes at the intermediate locations. Since the photon loss between intermediate locations is low, it is possible then to establish entanglement between intermediate quantum memory nodes. Once entanglement between adjacent nodes is established, one can extend it over larger distances using entanglement swapping. The long coherence time of a quantum memory is a crucial requirement for the quantum repeater protocol. It is obvious that the coherence time of a quantum memory should be much longer that the time it takes for light to travel between remote locations. For a communication distance l = 1000 km, the corresponding time is t = l/c = 3.3 ms. One can show that for a simple repeater protocol and realistic success probabilities of entanglement generation, the required coherence time should be on the order of many seconds, while for the more complicated protocols that involve multiplexing and several quantum memory cells per intermediate node, the required coherence time is on the order of milliseconds. In this thesis, I describe a quantum memory based on an ensemble of rubidium atoms confined in a one-dimensional optical lattice. The use of the magnetically- insensitive clock transition and suppression of atomic motion allows us to increase coherence time of the quantum memory by two-orders of magnitude compared to previous work. I also propose a method for determining the Zeeman content of atomic samples. In addition, I demonstrate the observation of quantum evolution under continuous measurement. The long quantum memory lifetime demonstrated in this work opens the way for scalable processing of quantum information and long distance quantum communication.
90

Broadband optical quantum memory

Reim, Klaus Franz January 2011 (has links)
This thesis is about the experimental implementation of a high-speed and robust quantum memory for light. A novel far off-resonant Raman approach to ensemble-based quantum memories in a room-temperature environment is developed and demonstrated. Storage and retrieval of sub-nanosecond, weak coherent light pulses at the single-photon-level with total efficiencies exceeding 30% and storage times of up to 4 μs are achieved. The coherence of the memory is shown by directly interfering a copy of the incident signal with the retrieved signal from the memory. The unconditional noise floor of the memory is found to be low enough to operate the memory in the quantum regime at room temperature. Multiple readout of a single stored excitation is demonstrated, suggesting that 100% readout is possible in different temporal modes. Furthermore, first results regarding the storage and retrieval of polarisation encoded qubits are obtained. This and the memory’s ability to operate in the quantum regime at room temperature with a low unconditional noise floor illustrate its potential usefulness for real world applications.

Page generated in 0.0759 seconds