Spelling suggestions: "subject:"kuantum phase atransition"" "subject:"kuantum phase 2transition""
31 |
Elektrischer Transport und Quantenkritikalität in reinem und substituiertem YbRh2Si2Friedemann, Sven 07 August 2009 (has links)
In der vorliegenden Arbeit wurde der elektrische Transport im Schwere-Fermionen-System YbRh2Si2 sowohl in seiner stöchiometrischen Form als auch mit teilweiser isoelektronischer Substitution von Ir oder Co auf dem Rh-Platz untersucht. In YbRh2Si2 liegt ein quantenkritischer Punkt vor, der zugänglich ist, indem der antiferromagnetische Phasenübergang mittels eines kleinen Magnetfelds zum absoluten Nullpunkt der Temperatur unterdrückt wird.
Die zentralen Messungen des Hallkoeffizienten zeigen einen Übergang der in der Extrapolation zu T=0 zu einer Diskontinuität wird und somit auf eine Rekonstruktion der Fermifläche am quantenkritischen Punkt schließen lässt. Dies belegt die unkonventionelle Natur der Quantenkritikalität in YbRh2Si2. Unterstützt wird dies auf fundamentale Weise durch verknüpfungen mit unkonventionellem Skalierungsverhalten.
In den Proben mit teilweiser Substitution wird der Einfluss einer Veränderung der Gitterparameter auf die Quantenkritikalität mit Hilfe von Widerstandsmessungen untersucht. Dabei zeigt sich, dass der magnetische Übergang von der Fermiflächenrekonstruktion separiert wird. Für Proben mit teilweiser Ir-Substitution, welche negativen Drücken entspricht, scheint im Zwischenbereich eine neuartige metallische Spinflüssigkeit hervorzutreten. / This work investigates the electrical transport of the heavy-fermion compound YbRh2Si2 in its stoichiometric form as well as with slight isoelectronic substitution of Ir or Co on the Rh site. A quantum critical point is present in YbRh2Si2 which is accessed by tuning the transition temperature of the antiferromagnetic order to absolute zero via the application of a small magnetic field.
The central measurements of the Hall coefficient reveal a crossover which sharpens to a discontinuity in the extrapolation to zero temperature implying a reconstruction of the Fermi surface at the quantum critical point. This allows to rule out conventional descriptions of the quantum criticality in YbRh2Si2. A scaling analysis corroborates this on a fundamental basis.
In the samples with partial substitution the effect of unit cell volume change on the quantum criticality was investigated by means of resistivity measurements. Surprisingly, the magnetic transition is separated from the Fermi surface reconstruction. For samples with Ir substitution corresponding to negative chemical pressure, a new metallic spin liquid seems to emerge in the intermediate regime.
|
32 |
Gaussian Critical Line in Anisotropic Mixed Quantum Spin ChainsBischof, Rainer 06 February 2013 (has links)
By numerical methods, two models of anisotropic mixed quantum spin chains, consisting of spins of two different sizes, Sa = 1/2 and Sb = 1 as well as Sb = 3/2, are studied with respect to their critical properties at quantum phase transitions in a selected region of parameter space. The quantum spin chains are made up of basecells of four spins, according to the structure Sa − Sa − Sb − Sb. They are described by the XXZ Hamiltonian, that extends the quantum Heisenberg model by a variable anisotropic exchange interaction. As additional control parameter, an alternating exchange constant between nearest-neighbour spins is introduced. Insight gained by complementary
application of exact diagonalization and quantum Monte Carlo simulations, as well as appropriate methods of analysis, is embedded in the broad existing knowledge on homogeneous quantum spin chains. In anisotropic homogeneous quantum spin chains, there exist phase boundaries with continuously varying critical exponents, the
Gaussian critical lines, along which, in addition to standard scaling relations, further extended scaling relations hold. Reweighting methods, also applied to improved quantum Monte Carlo estimators, and finite-size scaling analysis of simulation data deliver a wealth of numerical results confirming the existence of a Gaussian critical line also in the mixed spin models considered. Extrapolation of exact data offers, apart from confirmation of simulation data, furthermore, insight into the conformal operator content of the model with Sb = 1. / Mittels numerischer Methoden werden zwei Modelle anisotroper gemischter Quantenspinketten, bestehend aus Spins zweier unterschiedlicher Größen, Sa = 1/2 und Sb = 1 sowie Sb = 3/2, hinsichtlich ihrer kritischen Eigenschaften an Quanten-Phasenübergängen in einem ausgewählten Parameterbereich untersucht. Die Quantenspinketten sind aus Basiszellen zu vier Spins, gemäß der Struktur Sa − Sa − Sb − Sb, aufgebaut. Sie werden durch den XXZ Hamiltonoperator beschrieben, der das isotrope Quanten-Heisenberg Modell um eine variable anistrope Austauschwechselwirkung erweitert. Als zusätzlicher Kontrollparameter wird eine alterniernde Kopplungskonstante zwischen unmittelbar benachbarten Spins eingeführt. Die durch komplementäre Anwendung exakter Diagonalisierung und Quanten-Monte-Carlo Simulationen, sowie
entsprechender Analyseverfahren, gewonnenen Erkenntnisse werden in das umfangreiche existierende Wissen über homogene Quantenspinketten eingebettet. Im Speziellen treten in anisotropen homogenen Quantenspinketten Phasengrenzen mit kontinuierlich
variierenden kritischen Exponenten auf, die Gaußschen kritischen Linien,
auf denen neben den herkömmlichen auch erweiterte Skalenrelationen Gültigkeit besitzen. Umgewichtungsmethoden, speziell auch angewandt auf verbesserte Quanten-Monte-Carlo Schätzer, und Endlichkeitsskalenanalyse von Simulationsdaten liefern
eine Fülle von numerischen Ergebnissen, die das Auftreten der Gaußschen kritischen Linie auch in den untersuchten gemischten Quantenspinketten bestätigen. Die Extrapolation exakter Daten bietet, neben der Bestätigung der Simulationsdaten, darüber hinaus Einblick in einen Teil des konformen Operatorinhalts des Modells mit Sb = 1.
|
33 |
Models of superconductors with correlated defects / Modellering av supraledare med korrelerade defekterBolin, Jakob January 2022 (has links)
The quantum phase transition between groundstates of a system with correlated disorder near absolute zero is studied. The computations are based on Monte Carlo methods and the worm algorithm which is an effective method to simulate basic models like the Ising and XY model by making use of global Monte Carlo moves given by modified random walks. Random quenched disorder modeled as a correlated distribution of two values of the coupling constant gives rise to an additional phase transition with a not before seen intermediate phase. / Kvantfasövergången mellan grundtillstånd av ett system med korrelerad oordning nära nolltemperaturen studeras. Beräkningarna är baserade på Monte Carlo metoder och worm algoritmen som är en effektiv metod för att simulera grundläggande modeller som Ising och XY modellen genom att använda sig av globala Monte Carlo steg som ges av modifierade slumpmässiga vandringar. Slumpmässig infrusen oordning modellerad som en korrelerad fördelning av två värden på kopplingsstyrkan ger upphov till en ny mellanliggande fas.
|
34 |
Neutron Scattering Study of Ni-V and Ce(Ni,Cu)Sn Close to the Onset of Magnetic Order.Bhattarai, Shiva 10 November 2022 (has links)
No description available.
|
35 |
Experiments with Coherently-Coupled Bose-Einstein condensates: from magnetism to cosmologyCominotti, Riccardo 16 November 2023 (has links)
The physics of ultracold atomic gases has been the subject of a long standing theoretical and experimental research over the last half century. The development of evaporative cooling techniques and the realization of the first Bose-Einstein Condensate (BEC) in 1995 gave a great advantage to the field. A great experimental knowledge of the fundamental properties of BECs, such as long-range coherence, superfluidity and topological excitations, has now been acquired. On top of these advances, current research on ultracold atoms is also focusing on quantum simulations, which aim at building analogue models of otherwise difficult to compute physical systems in the lab. In this context, BECs, with their enhanced coherence, many-body dynamics and superfluid character offer a powerful platform for advances in the field. Shortly after the first realization of a BEC, research started also investigating the physics of quantum mixtures of a BECs, either composed of different atomic species or isotopes, or of atoms occupying different hyperfine states. The latter are known as spin mixtures, or spinor condensates. The presence of multiple components interacting through mutual contact interactions enriches the physics of the condensate, introducing ground states with magnetic ordering as well as spin dynamics, which can be order of magnitudes less energetic than the density one. On top of this, hyperfine states can be coherently coupled with an external resonant radiation. Interesting physics arises when the strength of the coupling is comparable with the energy of spin excitations, an example of which is given by the emergence of the internal Josephson effect. This regime has been the subject of intense theoretical studies in the past twenty years, however its experimental realization on ultracold atomic platforms have been proven to be challenging, with experiments strongly limited by coherence times of few tens of milliseconds. In fact, the small energy scale of spin excitations reflects in a high sensitivity coupling to environmental magnetic noise, which affects the resonant condition. The experimental apparatus on which I worked during my Ph.D. solve this problem employing a magnetic shield that surrounds the science chamber, attenuating external magnetic fields by 6 orders of magnitudes.
During my Ph.D., I investigated the properties of a coherently coupled mixture of BEC of Sodium 23, performing different experiments in two atomic configurations. The first configuration consist of a mixture of hyperfine states, namely the |F=1, mF = -1> and |F=1, mF = +1>, coupled by a two-photon transition, which is characterized by miscibility in the ground state. Another configuration was instead realized working with a strongly immiscible mixture of |F=1, mF=-1> and |F=2, mF = -2>, realized through with a one photon transition.
My first experiment was devoted to the characterization of different methods of manipulation of the coupled miscible mixture in an elongated quasi-1D geometry. In Local Density Approximation (LDA), The dynamics of the system, depends on the atom number difference, the relative phase, and coupling to mean field energy ratio, can be fully described as an internal Josephson junction. We characterized this dynamics on a sample an inhomogeneous spatial profile, developing three different protocols for state manipulations.
In a second experiment, I developed a protocol to generate Faraday waves in an unpolarized miscible mixture. Faraday waves are classical non-linear waves characterized by a regular pattern, that originate in classical and quantum fluids via a parametric excitation in the fluid. Interestingly enough, this process resembles the phase of reheating of the early universe, where the oscillation of the inflaton field is thought to have excited particles out of the vacuum. In analogy with this phenomenon, the oscillation of the inflaton field can be simulated with the periodic modulation of the trapping potential.
On top of this, in a spin mixture, the parametric modulation can excite either in-phase (density) modes or out-of-phase (spin) modes, as two possible elementary excitations are present in the system. By extracting the spatial periodicity of the generated pattern at different modulation frequencies, I was then able to measure the dispersion relations for both density and spin modes of the system. In the presence of the coherent coupling, when spin excitations becomes gapped, we further demonstrate the scaling of the gap with the strength of the coupling radiation.
The third experiment I realized concerned the characterization of the magnetic ground state of a spatially extended immiscible mixture in the presence of the coherent coupling. The Hamiltonian of such a system is formally equivalent to a continuous version of the transverse field Ising model, which describes magnetic materials at zero temperature. In this mapping, a nonlinear interaction term arises from the ratio between the self-interaction energy and the strength of the coupling, which acts as the transverse field. As the ratio between the two quantities is varied above and below one, the ground state of the system spontaneously changes from a paramagnetic phase to an ordered ferromagnetic phase, featuring two equivalent and opposite magnetizations, a signature of the occurrence of a second order quantum phase transition (QPT). Furthermore, in the magnetic model, the degeneracy between the two ferromagnetic ground states can be broken by introducing an additional longitudinal field. In the atomic case, the role of this additional field is taken by the detuning between the coupling radiation and the resonant transition frequency of non-interacting atoms.
I characterized the QPT developing protocols to manipulate the spin mixture in its spatially extended ground state, varying the longitudinal field. Leveraging on the inhomogeneity of a BEC trapped in the harmonic potential, a smooth variation of the spin self-interaction energy occurs spontaneously in space, introducing different magnetic regimes at fixed coupling strength. These protocols gave access to a characterization of static properties typical of magnetic materials, such as the presence of an hysteresis cycle. The occurrence of the phase transition was instead validated by a measurement of the magnetic susceptibility and corresponding fluctuations, which both show a divergence when crossing the QPT critical point. At last, I developed a protocol to smoothly manipulate the position of magnetic domain walls, the least energetic excitations in a ferromagnet.
While the previous study focused on static properties, the last experimental investigation presented in this thesis was devoted to the study of the dynamics of the metastable ferromagnetic region of the BEC. As a result of the presence of an hysteresis cycle, it is possible to engineer states of the ferromagnetic energy landscape that are homogeneously prepared either in the global minimum, with trivial dynamics, or in the metastable, higher energy, local minima. In the latter case, a classical system should eventually decay towards the global minimum, driven by temperature fluctuations which overtop the energy barrier separating the two minima. For a quantum system described by a field theory, such as a ferromagnetic BEC, the decay towards the global minimum occurs by tunneling through the barrier, triggered by quantum fluctuations. The event of tunneling is known as False Vacuum Decay (FVD), and is of outstanding relevance also for high energy physics and cosmology, were the first theoretical models were developed. In the FVD model, the decay towards the global minimum, the true vacuum, is a stochastic process that occurs only if a resonant bubble of true vacuum is formed. Once formed, the bubble will eventually expand throughout the whole system, as the true vacuum is energetically favorable. The probability for such a bubble to form can be approximately calculated analytically in 1D, and should depend exponentially on the height of the barrier the field has to tunnel through. Due to the exponentially long time scale of the process, experimental observations of FVD were still lacking.
Thanks to the enhanced coherence time of the superfluid ferromagnetic mixture, and to the precise control of the barrier height through the detuning from atomic resonance, we were able to observe the event of bubble nucleation in a ferromagnetic BEC. To corroborate the observation, I measured the characteristic timescale of the decay for different values of the control parameters. Results were successfully compared first with numerical simulation, and then validated by instanton theory.
|
36 |
Phases, Transitions, Patterns, And Excitations In Generalized Bose-Hubbard ModelsKurdestany, Jamshid Moradi 05 1900 (has links) (PDF)
This thesis covers most of my work in the field of ultracold atoms loaded in optical lattices. This thesis can be divided into five different parts. In Chapter 1, after a brief introduction to the field of optical lattices I review the fundamental aspects pertaining to the physics of systems in periodic potentials and a short overview of the experiments on ultracold atoms in an optical lattice.
In Chapter 2 we develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this poten¬tial, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator(MI), density-wave(DW), and supersolid (SS) phases in the plane of the chemical potential and on-site repulsion ; we present phase diagrams for representative values of , the repulsive energy for bosons on nearest-neighbor sites. We demonstrate that, when the confining potential is present, superfluid and density-wave order parameters are nonuniform; in particular, we obtain, for a few representative values of parameters, spherical shells of SF, MI ,DW ,and SSphases. We explore the implications of our study for experiments on cold-atom dipolar con¬densates in optical lattices in a confining potential.
In Chapter3 we present an extensive study of Mottinsulator( MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with har¬monic traps. For this we develop an inhomogeneous mean-field theory. Our results for the BH model with one type of spinless bosons agrees quantitatively with quan¬tum Monte Carlo(QMC) simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional(3D) systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also generalize our inhomogeneous mean-field theory to study BH models with har¬monic traps and(a) two species of bosons or(b) spin-1bosons. With two species of bosons we obtain rich phase diagrams with a variety of SF and MI phases and as¬sociated shells, when we include a quadratic confining potential. For the spin-1BH model we show, in a representative case, that the system can display alternating shells of polar SF and MI phases; and we make interesting predictions for experi¬ments in such systems. .
In Chapter 4 we carry out an extensive study of the phase diagrams of the ex-tended Bose Hubbard model, with a mean filling of one boson per site, in one dimension by using the density matrix renormalization group and show that it contains Superfluid (SF), Mott-insulator (MI), density-wave (DW) and Haldane ¬insulator(HI) phases. We show that the critical exponents and central charge for the HI-DW,MI-HI and SF-MI transitions are consistent with those for models in the two-dimensional Ising, Gaussian, and Berezinskii-Kosterlitz-Thouless (BKT) uni¬versality classes, respectively; and we suggest that the SF-HI transition may be more exotic than a simple BKT transition. We show explicitly that different bound¬ary conditions lead to different phase diagrams..
In Chapter 5 we obtain the excitation spectra of the following three generalized of Bose-Hubbard(BH) models:(1) a two-species generalization of the spinless BH model, (2) a single-species, spin-1 BH model, and (3) the extended Bose-Hubbard model (EBH) for spinless interacting bosons of one species. In all the phases of these models we show how to obtain excitation spectra by using the random phase approximation (RPA). We compare the results of our work with earlier studies of related models and discuss implications for experiments.
|
37 |
Local moment phases in quantum impurity problemsTucker, Adam Philip January 2014 (has links)
This thesis considers quantum impurity models that exhibit a quantum phase transition (QPT) between a Fermi liquid strong coupling (SC) phase, and a doubly-degenerate non-Fermi liquid local moment (LM) phase. We focus on what can be said from exact analytic arguments about the LM phase of these models, where the system is characterized by an SU(2) spin degree of freedom in the entire system. Conventional perturbation theory about the non-interacting limit does not hold in the non-Fermi liquid LM phase. We circumvent this problem by reformulating the perturbation theory using a so-called `two self-energy' (TSE) description, where the two self-energies may be expressed as functional derivatives of the Luttinger-Ward functional. One particular paradigmatic model that possesses a QPT between SC and LM phases is the pseudogap Anderson impurity model (PAIM). We use infinite-order perturbation theory in the interaction, U, to self-consistently deduce the exact low-energy forms of both the self-energies and propagators in each of the distinct phases of the model. We analyse the behaviour of the model approaching the QPT from each phase, focusing on the scaling of the zero-field single-particle dynamics using both analytical arguments and detailed numerical renormalization group (NRG) calculations. We also apply two `conserving' approximations to the PAIM. First, second-order self-consistent perturbation theory and second, the fluctuation exchange approximation (FLEX). Within the FLEX approximation we develop a numerical algorithm capable of self-consistently and coherently describing the QPT coming from both distinct phases. Finally, we consider a range of static spin susceptibilities that each probe the underlying QPT in response to coupling to a magnetic field.
|
38 |
Propriétés Structurales et Électroniques du Graphène Épitaxié sur Carbure de Silicium / Structural and Electronic Properties of Epitaxial Graphene on Silicon CarbideRidene, Mohamed 17 October 2013 (has links)
La synthèse du graphène par traitement thermique d’un substrat de carbure de silicium (SiC) est une technique prometteuse pour l’intégration de ce nouveau matériau dans l’industrie, notamment dans les dispositifs électroniques. L’avantage de cette méthode réside dans la croissance de films minces de graphène de taille macroscopique directement sur substrat isolant. Toutefois, avant d’intégrer ce matériau, il convient d’en contrôler la synthèse et d’en moduler les propriétés. Dans ce travail de thèse, nous étudions les propriétés structurales et électroniques du graphène obtenu par la graphitisation des polytypes 3C-, 4H- et 6H-SiC. A partir de diverses méthodes de caractérisation, telles que la diffraction des électrons lents (LEED) ou la microscopie et spectroscopie à effet tunnel (STM/STS), nous avons vérifié, dans un premier temps, que le caractère discontinu du graphène sur les bords de marches peut introduire un confinement latéral supplémentaire des électrons dans le graphène. Dans un second temps, l’observation des singularités de Van Hove nous a permis de démontrer l’effet de confinement unidimensionnel dans les régions d’accumulations de marches du SiC. Enfin, l’introduction de désordre dans nos couches de graphène induit une réduction de la densité de porteurs de charges dans les couches. De même, ce désordre conduit à une transition de phase quantique entre le régime localisé et le régime d’effet Hall quantique. / The synthesis of graphene by thermal decomposition of silicon carbide (SiC) is a promising technique for the integration of this new material in the industry, especially in electronic devices. The advantage of this method lies in the growth of macroscopic graphene films directly on an insulator substrate. However, before using this material in electronic devices, it is advisable to control its synthesis and modulate its properties. In this thesis, we present the structural and electronic properties of graphene obtained by graphitization of 3C- , 4H - and 6H- SiC polytypes. Various characterization methods were used, including low energy electron diffraction (LEED) and microscopy and scanning tunneling spectroscopy (STM / STS). Based on STM / STS measurements, we show that the discontinuity of epitaxial graphene at the step edges may introduce an additional lateral confinement of electrons in graphene. The observation of Van Hove singularities in the STS spectra confirmed the one dimensional confinement of graphene in step bunching regions of SiC.Finally, we show that when disorder is introduced on our graphene samples, the charge carrier density is reduced. This disorder lead to the observation of a quantum phase transition from a localized regime to a quantum Hall effect regime.
|
39 |
Manipulation des interactions dans les gaz quantiques : approche théorique / Manipulation of Interactions in Quantum Gases : a theoretical approachPapoular, David 11 July 2011 (has links)
Les interactions entre particules dans les gaz quantiques ultrafroids peuvent être contrôlées à l'aide de résonances de Fano-Feshbach. Ces résonances de diffusion se produisent lors de collisions à basse énergie entre deux atomes et sont généralement obtenues à l'aide d'un champ magnétique statique externe. Elles font des gaz atomiques ultrafroids un terrain d'exploration pour la recherche de nouvelles phases dans lesquelles la physique quantique joue un rôle clef.Le travail présenté dans ce mémoire s'inscrit dans le cadre de la recherche de telles phases.Ce manuscrit comporte deux parties. La première est consacrée à l'étude de bosons composites obtenus dans des gaz de Fermi hétéronucléaires 2D. Nous étudions le diagramme de phase de ce système à T = 0 et nous mettons en évidence une transition de phase gaz-cristal. Nos résultats sont prometteurs en vue d'expériences futures avec le mélange 6Li-40K.Dans la seconde partie, nous proposons un nouveau type de résonance de Fano-Feshbach. Le couplage à l'origine de cette résonance est obtenu à l'aide d'un champ magnétique micro-onde.Notre méthode s'applique à n'importe quelle espèce atomique dont l'état fondamental est clivé par l'interaction hyperfine. Elle ne nécessite pas l'utilisation d'un champ magnétique statique.Nous décrivons d'abord ces résonances à l'aide d'un modèle simple à deux niveaux. Ensuite, nous les caractérisons numériquement à l'aide de notre propre programme implémentant l'approche multi-canaux des collisions atomiques. Nos résultats ouvrent des perspectives optimistes en vue de l'observation des résonances de Feshbach induites par un champ micro-onde avec les atomes alcalins bosoniques suivants : 23Na, 41K, 87Rb et 133Cs. / The interparticle interactions in ultracold atomic gases can be tuned using Fano-Feshbach scattering resonances, which occur in low-energy collisions between two atoms. These resonances are usually obtained using an external static magnetic field. They turn ultracold atomic gases into an experimental playground for the investigation of novel phases in which Quantum Physics plays a key role. The work presented in this memoir is part of the theoretical effort towards the search for yet unexplored quantum phases.This manuscript is organised in two parts. The first one is devoted to composite bosons formed in a 2D heteronuclear Fermi gas. We characterise the zero-temperature phase diagram and show the gas-crystal phase transition in this system. Our results are promising in view of future experiments with the 6Li-40K mixture.In the second part, we propose an alternative to static-field Fano-Feshbach resonances. The idea is to achieve the coupling by using a resonant microwave magnetic field. Our scheme applies to any atomic species whose ground state is split by the hyperfine interaction. It does not require the use of a static magnetic field. First, these resonances are presented using a simple two-channel model. We then characterise them numerically using our own full-edged implementation of the coupled-channel approach. Our results yield optimistic prospects for the observation of microwave-induced Fano-Feshbach resonances with the bosonic alkali atoms 23Na, 41K, 87Rb, and 133Cs.
|
40 |
Conductivité pour des fermions de Dirac près d’un point critique quantiqueMartin, Simon 08 1900 (has links)
Les matériaux de Dirac constituent une classe intéressante de systèmes pouvant subir une transition de phase quantique à température nulle, lorsqu’un paramètre non-thermique atteint un point critique quantique. À l’approche d’un tel point, les observables physiques sont affectées par les importantes fluctuations thermiques et quantiques. Dans ce mémoire, on utilise des techniques de théorie conforme des champs afin d’étudier le tenseur de conductivité électrique dans des théories en 2 + 1 dimensions contenant des fermions de Dirac près d’un point critique quantique. À basse énergie, ces dernières décrivent de façon adéquate de nombreux matériaux de Dirac ainsi que leur transition de phase quantique. La conductivité est étudiée dans le régime des hautes fréquences, à température non-nulle et lorsque le paramètre non-thermique est près de sa valeur critique. Dans ce projet, l’emphase est mise sur les points critiques quantiques invariants sous la parité et le renversement du temps. Dans ce cas, l’expansion de produit d’opérateurs (Operator product expansion en anglais) ainsi que la théorie des perturbations conforme permettent d’obtenir une expression générale pour l’expansion à grandes fréquences des conductivités longitudinales et transverses (de Hall) lorsque le point critique quantique est déformé par un opérateur scalaire relevant. Grâce à ces dernières, nous sommes en mesure de déduire des règles de somme exactes pour ces deux quantités. À titre d’exemple, nos résultats généraux sont appliqués dans le cadre du modèle interagissant de Gross-Neveu, où nous obtenons l’expansion des deux conductivités ainsi que les règles de somme pour un nombre de saveurs de fermions de Dirac N arbitraire. Ces mêmes expressions sont ensuite obtenues par un calcul explicite à N = infini, permettant la comparaison avec les résultats pour un N quelconque. Par la suite, des résultats généraux similaires sont obtenus dans le cas où le point critique quantique est déformé par un opérateur pseudoscalaire relevant. Ces derniers sont finalement appliqués à une théorie de fermions de Dirac libres perturbée par un terme de masse. / Dirac materials constitute an interesting class of systems that can undergo a quantum phase transition at zero temperature, when a non-thermal parameter reaches a quantum critical point. As we approach such a point, physical observables are altered by the important thermal and quantum fluctuations. In this thesis, conformal field theory techniques are used to study the electrical conductivity tensor in theories with Dirac fermions in 2+1 dimensions close to a quantum critical point. At low energies, these adequately describe various Dirac materials as well as their quantum phase transition. In this project, we focus on theories that have a quantum critical point invariant under parity and time-reversal. In this case, the operator product expansion and conformal perturbation theory allow to obtain a general expression for the large frequency expansion of the longitudinal and transverse (Hall) conductivities when the quantum critical point is deformed by a relevant scalar operator. Using these, we are able to deduce exact sum rules for both quantities. As an example, our general results are applied to the Gross-Neveu model, where we obtain the large frequency expansion for both conductivities and the associated sum rules for an arbitrary number of Dirac fermion flavors N. The same expressions are then obtained by an explicit calculation at N = infinity, allowing to compare with our results for any N. Afterwards, analogous general results are obtained for theories where the quantum critical point is deformed by a relevant pseudoscalar. These are finally applied to a theory of massless free Dirac fermions perturbed by a mass term.
|
Page generated in 0.0777 seconds