Spelling suggestions: "subject:"feshbach resonance"" "subject:"eshbach resonance""
1 |
Production of bosonic molecules in the nonequilibrium dynamics of a degenerate Fermi gas across a Feshbach resonanceDobrescu, Bogdan E. 02 June 2009 (has links)
In this thesis I present a nonequilibrium quantum field theory that describes the
production of molecular dimers from a two-component quantum-degenerate atomic
Fermi gas, via a linear downward sweep of a magnetic field across an s-wave Feshbach
resonance. This problem raises interest because it is presently unclear as to why
deviations from the universal Landau-Zener formula for the transition probability at
two-level crossing are observed in the experimentally measured production efficiencies.
The approach is based on evaluating real-time Green functions within the Keldysh-
Schwinger formalism. The effects of quantum statistics associated with Pauli blocking
for fermions and induced emission for bosons, characteristic of particle scattering in
a quantum-degenerate many-body medium, are fully accounted for. I show that the
molecular conversion efficiency is represented by a power series in terms of a dimensionless
parameter which, in the zero-temperature limit, depends solely on the initial
gas density and the Landau-Zener parameter. This result reveals a hindrance of the
canonical Landau-Zener transition probability due to many-body effects, and presents
an explanation for the experimentally observed deviations.
A second topic treated in this thesis concerns the study of non-adiabatic transitions
in N-state Landau-Zener systems. In connection to this, I provide a proof of
the conjecture put forth by Brundobler and Elser, regarding the survival probability
on the diabatic levels with maximum/minimum slope.
|
2 |
Optical Control of Magnetic Feshbach Resonances by Closed-Channel Electromagnetically Induced TransparencyJagannathan, Arunkumar January 2016 (has links)
<p>Optical control of interactions in ultracold gases opens new fields of research by creating ``designer" interactions with high spatial and temporal resolution. However, previous optical methods using single optical fields generally suffer from atom loss due to spontaneous scattering. This thesis reports new optical methods, employing two optical fields to control interactions in ultracold gases, while suppressing spontaneous scattering by quantum interference. In this dissertation, I will discuss the experimental demonstration of two optical field methods to control narrow and broad magnetic Feshbach resonances in an ultracold gas of $^6$Li atoms. The narrow Feshbach resonance is shifted by $30$ times its width and atom loss suppressed by destructive quantum interference. Near the broad Feshbach resonance, the spontaneous lifetime of the atoms is increased from $0.5$ ms for single field methods to $400$ ms using our two optical field method. Furthermore, I report on a new theoretical model, the continuum-dressed state model, that calculates the optically induced scattering phase shift for both the broad and narrow Feshbach resonances by treating them in a unified manner. The continuum-dressed state model fits the experimental data both in shape and magnitude using only one free parameter. Using the continuum-dressed state model, I illustrate the advantages of our two optical field method over single-field optical methods.</p> / Dissertation
|
3 |
Excitações vibracionais mediadas pela ressonância de Feshbach eletrônica 2Eg+ no espalhamento de elétrons por moléculas de hidrogênio / Vibrational excitations mediated by a electronic Feshbach resonance 2Eg+ in electron scattering by hydrogen moleculesOliveira, Eliane Marques de 31 March 2006 (has links)
Orientador: Marco Aurelio Pinheiro Lima / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-06T20:07:28Z (GMT). No. of bitstreams: 1
Oliveira_ElianeMarquesde_M.pdf: 1735401 bytes, checksum: 96cad8d360043e7a2e9b4a6b65936027 (MD5)
Previous issue date: 2006 / Resumo: A relação entre ressonâncias de Feshbach e excitações eletrônicas é bem conhecida no caso de espalhamento de elétrons por moléculas de H2, mas ainda pouco explorada no espalhamento de pósitrons, tornando interessante, portanto, um estudo comparativo. Porém, antes de pensarmos em comparações, nos preocupamos em tentar entender se, de fato, uma ressonância de Feshbach se manifesta no espalhamento de pósitrons por moléculas de H2. Esta preocupação foi motivada devido à não observação experimental desta ressonância em investigação realizada logo após nosso grupo de pesquisa ter publicado um estudo no qual havia evidências para a existência de uma ressonância de Feshbach em colisões pósitron-H2, obtida num cálculo realizado na aproximação de núcleos fixos para a distância internuclear de equilíbrio Ro=1.4ao. Nossa estratégia foi calcular seções de choque, ainda na aproximação de núcleos fixos, para diversas distâncias internucleares em torno de Ro. Os resultados obtidos sugerem que a ausência experimental da ressonância esteja ligada à abertura de um novo canal eletrônico para R > Ro. Para esses cálculos utilizamos o Método Multicanal de Schwinger (SMC), para obtenção dos parâmetros de colisão (posição e largura da ressonância), em combinação com a aproximação do Potencial Complexo Local (também conhecido por Boomemng Model), para inclusão do acoplamento dos graus de liberdade vibracionais. A ausência da ressonância para algumas distâncias internucleares no espalhamento de pósitrons impede o cálculo de seções de choque vibracionalmente resolvidas através da aproximação local. Por outro lado, para o espalhamento de elétrons, que é um desafio como problema teórico, realizamos os cálculos e encontramos acordo razoável com os dados experimentais disponíveis / Abstract: The relationship between Feshbach resonances and electronic excitation is well known in electron scattering by Hydrogen molecules, but still little exploited in the positron scattering case, making interesting, a comparative study. However, before thinking about comparisons, we have to address the question if, in fact, a Feshbach resonance manifests itself in the positron scattering by Hydrogen molecules. This issue is motivated by the fact that recent measured cross sections have not shown the same features presented by our earlier calculated Feshbach resonance in positron-Hydrogen collisions, carried out in the fixed-nuclei approach for the equilibrium internuclear distance, Ro=1.4ao. Our strategy was to calculate cross sections, still in the fixed nuclei approach, for several internuclear distances around Ro. The obtained results suggest that the experimental absence of the resonance is related to the opening of a new electronic channel for R > Ro. For these calculations we have used the Schwinger Multichannel Method (SMC) to obtain the collision parameters (position and width of the resonances) in combination with the Local Complex Potential approach (also known for Boomerang Model), for inclusion of the coupling of the vibrational degrees of freedom. The absence of the resonance for some internuclear distantes prevents the calculation of vibrationally resolved cross sections by positron impact using the local approach. On the other hand, for the electron scattering case, which is also a challange as a theoretical problem, we have carried out the calculation and have found good agreement with available experimental data / Mestrado / Física Atômica e Molecular / Mestre em Física
|
4 |
Creating a Bose-Einstein condensate of stable molecules using photoassociation and Feshbach resonancePhou, Pierre January 2014 (has links)
Quantum degenerate molecular gases are of interest for the unique level of control they offer over chemical interactions and processes. To reach the quantum degenerate regime, these molecular gases must be cooled to ultracold temperatures, typically on the order of 100 nanoKelvins. Unlike atoms, with a few-level system that facilitates cooling, molecules represent a many-level system, which makes these temperatures experimentally difficult to achieve. As a result, experiments have turned to photoassociation and Feshbach resonance as shortcuts to form ultracold molecules from already ultracold atoms. Photoassociation and Feshbach resonance have been utilized to successfully create stable quantum degenerate molecules, but not on a routine basis, and only for a small range of molecular species. The primary focus of this thesis will be to study photoassociation and Feshbach resonance, and investigate possible routes to more efficient long-lived quantum degenerate molecule formation. We will also investigate realistic limiting conditions to open the possibility to more routine molecules, and to molecular species that are currently inaccessible. Overall, we find combined photoassociation and Feshbach resonance are viable schemes for efficiently creating quantum degenerate molecules, under realistic restrictions such as low laser intensity, narrow Feshbach resonance, and strong elastic collisions. As the techniques to create quantum degenerate molecules become more robust and experimentally available, the creation of colder, larger, and more long-lived samples will facilitate study of these molecules, and spur development into new applications. / Physics
|
5 |
Formation of molecules in ultra-cold atomic gazes via quasi-resonant fieldsSokhoyan, Ruzan 07 June 2010 (has links) (PDF)
We study the nonlinear mean-field dynamics of diatomic molecule formation at coherent photo- and magneto-association of ultracold atoms focusing on the case when the system is initially in the all-atomic state. We show that in the limit of strongly nonlinear interaction between an ultra-cold atomic-molecular system and a quasi-resonant electromagnetic field, the molecule formation process, depending on the characteristics of the associating field, may evolve according two different scenarios, namely, weak- and strong-oscillatory regimes. In the first case the number of molecules increases without pronounced oscillations of atom-molecule populations, while in the second case high-amplitude Rabi-type oscillations arise. Assuming an arbitrary external field configuration, we construct analytical solutions to describe the system's temporal dynamics in the both interaction regimes. Further, we investigate the influence of inter-particle elastic scattering on the dynamics of coherent molecule formation subject to an external field configuration of the resonance-crossing Landau-Zener model. We derive an approximate solution which for the first time describes the whole temporal dynamics of the molecule formation in this general case.
|
6 |
Quelques problèmes à petit nombre d'atomes froids dans des guides d'onde. / Some few-body cold atom problems in waveguidesKristensen, Tom 18 September 2015 (has links)
Ce manuscrit est motivé par la possibilité d’explorer de nombreux régimes quantiques grâce aux atomes froids : l’utilisation de résonances de diffusion rend possible un contrôle très fin des effets des interactions et l’ajout de pièges extérieurs permet de s’approcher de régimes de dimension réduite. Nous étudions ici quelques propriétés d’atomes froids piégés dans des guides d’onde uni- ou bidimensionnels au voisinage de résonances de Feshbach. En jouant sur l’intensité du confinement, on peut étudier la transition entre un système tridimensionnel et un système en dimension réduite. Nous modélisons les interactions par un modèle à deux voies qui inclut le couplage cohérent entre atomes et molécules de Feshbach. Nous mettons en évidence l’existence d’un régime unidimensionnel, que l’on peut décrire par un modèle de contact, et dans lequel la portée effective est un paramètre essentiel. Nous examinons alors le problème à trois corps dans ce régime pour des bosons ainsi que dans le régime équivalent pour des fermions totalement polarisés, en particulier leurs propriétés d’intégrabilité. Enfin, nous étudions le développement du viriel d’un gaz d’atomes froids. Nous démontrons, grâce à une approche diagrammatique, une généralisation de la formule de Beth et Uhlenbeck qui prend en compte à la fois les molécules de Feshbach et l’existence d’un guide d’onde. / This manuscript is motivated by the possibility of exploring many quantum regimes using cold atoms: interactions can be tuned very precisely by using Feshbach resonances and low-dimensional regimes can be approached with external potentials. Here, we study some properties of cold atoms trapped into uni- or bidimensional waveguides in the vicinity of a Feshbach resonance. The transition from a tridimensionnal to a low-dimensional system can then be studied by varying the intensity of the confinement. Interactions are described with a two-channel model that includes the coherent coupling between atoms and Feshbach molecules. We highlight a unidimensional regime, that can be described with a contact model and in which the effective range parameter is essential. Thus we investigate the three-body problem in this regime for bosons and also in the equivalent regime for totally polarized fermions, in particular their integrability properties. Finally, we study the virial expansion of a gas of cold atoms. Using a diagrammatic approach, we derive a generalization of the Beth and Uhlenbeck formula, that takes into account both the Feshbach molecules and the existence of a waveguide.
|
7 |
Universal Efimov physics in three- and four-body collisionsWang, Yujun January 1900 (has links)
Doctor of Philosophy / Department of Physics / Brett D. Esry / The Efimov effect plays a central role in few-body systems at ultracold temperature and
has thus accelerated a lot of studies on its manifestation in the collisional stability of the quantum degenerate gases. Near broad Feshbach resonances, Efimov physics has been studied both theoretically and experimentally through the zero-energy scattering observables. We have extended the theoretical studies of Efimov physics to a much broader extent. In
particular, we have investigated the three-body Efimov physics near narrow Feshbach resonances and have also identified the Efimov features beyond the zero temperature limit. We
have found, near a narrow Feshbach resonance, the non-trivial contribution from both of the resonance width and the short-range physics to the three-body recombination and vibrational dimer relaxation. Remarkably, the collisional stability of the Feshbach molecules are found to be opposite to that near the broad resonances: an increased stability for molecules made by bosons and a decreased stability for those made by fermions. The universal physics observed near the narrow Feshbach resonances is further found not to be limited to the zero temperature observables. We have found that the general features of Efimov physics and
those pertaining to a narrow resonance are manifested in different energy ranges above zero temperature. This opens the opportunity to observe Efimov physics by changing the collisional energy while keeping the atomic interaction fixed. The landscape of the universal Efimov physics is thus delineated in both of the interaction and the energy domain. We have also investigated Efimov physics in heteronuclear four-body systems where the complexity can be reduced by approximations. In particular, we have proposed ways for controllable production of the Efimov tri-atomic molecules by three-body or four-body recombinations
involving four atoms. We have also confirmed the existence of four-body Efimov effect in
a system of three heavy particles and one light particle, which has resolved a decade-long controversy on this topic. Finally, we have studied the collisional properties of four identical bosons in 1D, which is important to the experiments on the quantum gases confined in the 1D optical lattices.
|
8 |
Theoretical description of strongly correlated ultracold atoms in external confinementSchneider, Philipp-Immanuel 21 October 2013 (has links)
Heutzutage können ultrakalte Atome in unterschiedlichsten optischen Fallenpotenzialen eingefangen werden, während sich ihre Wechselwirkung durch die Ausnutzung von magnetischen Feshbachresonanzen kontrollieren lässt. Der Einschluss und die resonante Wechselwirkung können zu einer starken Korrelation der Atome führen, welche es erlaubt, mit ihnen physikalische Phänomene zu simulieren, deren Simulation mit heutigen Computern nicht durchführbar wäre. Eine maßgeschneiderte Kontrolle der Korrelationen könnte es schließlich ermöglichen, mit ultrakalten Atomen einen Quantencomputer zu implementieren. Um die Flexibilität und gute Kontrollierbarkeit ultrakalter Atome voll ausnutzen zu können, ist das Ziel dieser Dissertation die präzise theoretische Beschreibung stark korrelierter, eingeschlossener Atome an einer Feshbachresonanz. Das Wechselspiel zwischen dem Einschluss der Atome und einer Feshbachresonanz wird in dieser Arbeit zunächst anhand eines von Grund auf hergeleiteten analytischen Modells einer Feshbachresonanz zwischen Atomen in einer harmonischen Falle untersucht. Basierend auf diesem Modell wird ein Ansatz entwickelt, wechselwirkende Atome an einer Feshbachresonanz in einem optischen Gitter über ein Bose-Hubbard-Modell zu beschreiben. Im Gegensatz zu aufwendigeren numerischen Methoden erlaubt das Bose-Hubbard-Modell mit der Einbeziehung nur weniger Blochbänder die präzise Vorhersage der Eigenenergien und des dynamischen Verhaltens der Atome im optischen Gitter. Weiterhin wird eine Methode zur Lösung der zeitabhängingen Schrödingergleiung für zwei wechselwirkende Atome in einem dynamischen optischen Gitter entwickelt. Schließlich wird ein Ansatz vorgestellt, wie sich mit ultrakalten Atomen in einem dynamischen optischen Gitter ein Quantencomputer implementieren ließe. Als Quantenregister dient der korrelierte Mott-Zustand von repulsiv wechselwirkenden Atomen. Quantenoperationen werden durch periodisches Wackeln des optischen Gitters getrieben. / Today, ultracold atoms can be confined in various optical trapping potentials, while their mutual interaction can be controlled by magnetic Feshbach resonances. The confinement and resonant interaction can lead to a strong correlation of the atoms, which allows for the quantum simulation of physical phenomena whose classical simulation is computationally intractable. A tailored control of these correlations might eventually enable the implementation of a quantum computer with ultracold atoms. In order to take advantage of the flexibility and precise control of ultracold atoms, this thesis aims to provide a precise theoretical description of strongly correlated, confined atoms at a magnetic Feshbach resonance. The interplay between the confinement of the atoms and the Feshbach resonance is investigated by deriving from first principles a model that enables the complete analytic description of harmonically trapped ultracold atoms at a Feshbach resonance. This model is subsequently used to develop a Bose-Hubbard model of atoms in an optical lattice at a Feshbach resonance. In contrast to more elaborate numerical calculations, the model can predict the eigenenergies and the dynamical behavior of atoms in an optical lattice with high accuracy including only a small number of Bloch bands. Furthermore, a method id developed that solves the time-dependent Schrödinger equation for two interacting atoms in a dynamic optical lattice. Finally, a proposal for the implementation of a quantum computer with ultracold atoms in a dynamic optical lattice is presented. It utilizes the correlated Mott-insulator state of repulsively interacting atoms as a quantum register. Quantum operations are driven by a periodic shaking of the optical lattice.
|
9 |
Formation of molecules in ultra-cold atomic gazes via quasi-resonant fields / Formation de molécules dans des gaz atomiques ultra-froids par des champs quasi-résonnantsSokhoyan, Ruzan 07 June 2010 (has links)
Nous étudions la dynamique non linéaire en champ moyen de la formation de molécules diatomiques par photo-association ou magnéto-association d’atomes ultra froids pour un système entièrement atomique dans l’état initial. Nous montrons que dans la limite d’une forte interaction non linéaire entre un système atome-molécule ultra froid et un champ électromagnétique quasi résonnant, le processus de formation du condensat moléculaire peut évoluer suivant deux scénarios en fonction des caractéristiques du champ : régime faiblement oscillatoire ou régime fortement oscillatoire. Dans le cas du régime faiblement oscillatoire, le nombre de molécules augmente sans oscillations prononcées des populations atomiques et moléculaires alors que de fortes oscillations de Rabi apparaissent dans le second cas. Nous présentons des solutions analytiques décrivant la dynamique temporelle du système dans ces deux cas. Nous étudions ensuite l’influence de la diffusion élastique entre particules sur la dynamique de formation cohérente de molécules sous l’action d’un champ extérieur représenté par le modèle de Landau-Zener. Nous déterminons une solution approchée qui décrit bien toute la dynamique temporelle de formation moléculaire dans ce cas général. / We study the nonlinear mean-field dynamics of diatomic molecule formation at coherent photo- and magneto-association of ultracold atoms focusing on the case when the system is initially in the all-atomic state. We show that in the limit of strongly nonlinear interaction between an ultra-cold atomic-molecular system and a quasi-resonant electromagnetic field, the molecule formation process, depending on the characteristics of the associating field, may evolve according two different scenarios, namely, weak- and strong-oscillatory regimes. In the first case the number of molecules increases without pronounced oscillations of atom-molecule populations, while in the second case high-amplitude Rabi-type oscillations arise. Assuming an arbitrary external field configuration, we construct analytical solutions to describe the system’s temporal dynamics in the both interaction regimes. Further, we investigate the influence of inter-particle elastic scattering on the dynamics of coherent molecule formation subject to an external field configuration of the resonance-crossing Landau-Zener model. We derive an approximate solution which for the first time describes the whole temporal dynamics of the molecule formation in this general case.
|
10 |
Manipulation des interactions dans les gaz quantiques : approche théorique / Manipulation of Interactions in Quantum Gases : a theoretical approachPapoular, David 11 July 2011 (has links)
Les interactions entre particules dans les gaz quantiques ultrafroids peuvent être contrôlées à l'aide de résonances de Fano-Feshbach. Ces résonances de diffusion se produisent lors de collisions à basse énergie entre deux atomes et sont généralement obtenues à l'aide d'un champ magnétique statique externe. Elles font des gaz atomiques ultrafroids un terrain d'exploration pour la recherche de nouvelles phases dans lesquelles la physique quantique joue un rôle clef.Le travail présenté dans ce mémoire s'inscrit dans le cadre de la recherche de telles phases.Ce manuscrit comporte deux parties. La première est consacrée à l'étude de bosons composites obtenus dans des gaz de Fermi hétéronucléaires 2D. Nous étudions le diagramme de phase de ce système à T = 0 et nous mettons en évidence une transition de phase gaz-cristal. Nos résultats sont prometteurs en vue d'expériences futures avec le mélange 6Li-40K.Dans la seconde partie, nous proposons un nouveau type de résonance de Fano-Feshbach. Le couplage à l'origine de cette résonance est obtenu à l'aide d'un champ magnétique micro-onde.Notre méthode s'applique à n'importe quelle espèce atomique dont l'état fondamental est clivé par l'interaction hyperfine. Elle ne nécessite pas l'utilisation d'un champ magnétique statique.Nous décrivons d'abord ces résonances à l'aide d'un modèle simple à deux niveaux. Ensuite, nous les caractérisons numériquement à l'aide de notre propre programme implémentant l'approche multi-canaux des collisions atomiques. Nos résultats ouvrent des perspectives optimistes en vue de l'observation des résonances de Feshbach induites par un champ micro-onde avec les atomes alcalins bosoniques suivants : 23Na, 41K, 87Rb et 133Cs. / The interparticle interactions in ultracold atomic gases can be tuned using Fano-Feshbach scattering resonances, which occur in low-energy collisions between two atoms. These resonances are usually obtained using an external static magnetic field. They turn ultracold atomic gases into an experimental playground for the investigation of novel phases in which Quantum Physics plays a key role. The work presented in this memoir is part of the theoretical effort towards the search for yet unexplored quantum phases.This manuscript is organised in two parts. The first one is devoted to composite bosons formed in a 2D heteronuclear Fermi gas. We characterise the zero-temperature phase diagram and show the gas-crystal phase transition in this system. Our results are promising in view of future experiments with the 6Li-40K mixture.In the second part, we propose an alternative to static-field Fano-Feshbach resonances. The idea is to achieve the coupling by using a resonant microwave magnetic field. Our scheme applies to any atomic species whose ground state is split by the hyperfine interaction. It does not require the use of a static magnetic field. First, these resonances are presented using a simple two-channel model. We then characterise them numerically using our own full-edged implementation of the coupled-channel approach. Our results yield optimistic prospects for the observation of microwave-induced Fano-Feshbach resonances with the bosonic alkali atoms 23Na, 41K, 87Rb, and 133Cs.
|
Page generated in 0.0805 seconds