• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Algorithm Animator

Nicholson, Lori Eileen 01 January 2010 (has links)
The design and development of quantum algorithms present a challenge, especially for inexperienced computer science students. Despite the numerous common concepts with classical computer science, quantum computation is still considered a branch of theoretical physics not commonly used by computer scientists. Experimental research into the development of a quantum computer makes the use of quantum mechanics in organizing computation more attractive, however the physical realization of a working quantum computer may still be decades away. This study introduces quantum computing to computer science students using a quantum algorithm animator called QuAL. QuAL's design uses features common to classical algorithm animators guided by an exploratory study but refined to animate the esoteric and interesting aspects of quantum algorithms. In addition, this study investigates the potential for the animation of a quantum sorting algorithm to help novice computer science students understand the formidable concepts of quantum computing. The animations focus on the concepts required to understand enough about quantum algorithms to entice student interest and promote the integration of quantum computational concepts into computer science applications and curricula. The experimental case study showed no significant improvement in student learning when using QuAL's initial prototype. Possible reasons include the animator's presentation of concepts and the study's pedagogical framework such as choice of algorithm (Wallace and Narayanan's sorting algorithm), design of pre- and post tests, and the study's small size (20 students) and brief duration (2 hours). Nonetheless, the animation system was well received by students. Future work includes enhancing this animation tool for illustrating elusive concepts in quantum computing.
2

Utilização de pulsos de radiofrequência fortemente modulados no processamento de informação quântica via ressonância magnética nuclear / Development of strongly modulated pulses for quantum information processing via Nuclear Magnetic Resonance

Ferreira, Arthur Gustavo de Araujo 13 March 2009 (has links)
Nesta dissertação apresentamos um trabalho de desenvolvimento e utilização de pulsos de radiofreqüência modulados simultaneamente em freqüência, amplitude e fase (pulsos fortemente modulados, SMP, do inglês Strongly Modulated Pulses) para criar estados iniciais e executar operações unitárias que servem como blocos básicos para processamento da informação quântica utilizando Ressonância Magnética Nuclear (RMN). As implementações experimentais foram realizas em um sistema de 3 q-bits constituído por spins nucleares de Césio 133 (spin nuclear 7/2) em uma amostra de cristal líquido em fase nemática. Os pulsos SMP´s foram construídos teoricamente utilizando um programa especialmente desenvolvido para esse fim, sendo o mesmo baseado no processo de otimização numérica Simplex Nelder-Mead. Através deste programa, os pulsos SMP foram otimizados de modo a executarem as operações lógicas desejadas com durações consideravelmente menores que aquelas realizadas usando o procedimento usual de RMN, ou seja, seqüências de pulsos e evoluções livres. Isso tem a vantagem de reduzir os efeitos de descoerência decorrentes da relaxação do sistema. Os conceitos teóricos envolvidos na criação dos SMPs são apresentados e as principais dificuldades (experimentais e teóricas) que podem surgir devido ao uso desses procedimentos são discutidas. Como exemplos de aplicação, foram produzidos os estados pseudo-puros usados como estados iniciais de operações lógicas em RMN, bem como operações lógicas que foram posteriormente aplicadas aos mesmos. Utilizando os SMP\'s também foi possível realizar experimentalmente os algoritmos quânticos de Grover e Deutsch-Jozsa para 3 q-bits. A fidelidade das implementações experimentais foi determinadas utilizando as matrizes densidade experimentais obtidas utilizando um método de tomografia da matriz densidade previamente desenvolvido. / This dissertation presents the development and use of radiofrequency pulses simultaneously modulated in frequency, amplitude and phase (Strongly Modulated Pulses, SMP) for creating initial states and executing logical operations used as building blocks for Quantum Information Processing via Nuclear Magnetic Resonance (NMR-QIP). The experimental implementations were carried out in a 3 qubits system accomplished by Cesium 133 nuclei (nuclear spin 7/2) in a nematic liquid crystal. The SMP pulses were theoretically constructed using a home made computer program, which is based in the Simplex Nelder-Mead optimization procedure. Using this program, the SMP were optimized to the desired quantum logical operation with shorter durations than those achieved with conventional sequence of pulses and free evolutions as used in most NMR applications. This has the advantage of reducing decoherence effects that may appear as a results of the system relaxation. The main theoretical concepts are discussed together with the main experimental difficulties found in the SMP optimizations and executions. As application examples, the pseudo-pure state used as input for NMR-QIP and a 3 qubit logical gate were obtained. Besides, using the SMP\'s, the Grover and Deutsch-Jozsa quantum algorithms were experimentally executed. The experimental performance of the implementations was evaluated by a fidelity parameter calculated from the output density matrix, which were obtained using a quantum state tomography method previously developed.
3

Utilização de pulsos de radiofrequência fortemente modulados no processamento de informação quântica via ressonância magnética nuclear / Development of strongly modulated pulses for quantum information processing via Nuclear Magnetic Resonance

Arthur Gustavo de Araujo Ferreira 13 March 2009 (has links)
Nesta dissertação apresentamos um trabalho de desenvolvimento e utilização de pulsos de radiofreqüência modulados simultaneamente em freqüência, amplitude e fase (pulsos fortemente modulados, SMP, do inglês Strongly Modulated Pulses) para criar estados iniciais e executar operações unitárias que servem como blocos básicos para processamento da informação quântica utilizando Ressonância Magnética Nuclear (RMN). As implementações experimentais foram realizas em um sistema de 3 q-bits constituído por spins nucleares de Césio 133 (spin nuclear 7/2) em uma amostra de cristal líquido em fase nemática. Os pulsos SMP´s foram construídos teoricamente utilizando um programa especialmente desenvolvido para esse fim, sendo o mesmo baseado no processo de otimização numérica Simplex Nelder-Mead. Através deste programa, os pulsos SMP foram otimizados de modo a executarem as operações lógicas desejadas com durações consideravelmente menores que aquelas realizadas usando o procedimento usual de RMN, ou seja, seqüências de pulsos e evoluções livres. Isso tem a vantagem de reduzir os efeitos de descoerência decorrentes da relaxação do sistema. Os conceitos teóricos envolvidos na criação dos SMPs são apresentados e as principais dificuldades (experimentais e teóricas) que podem surgir devido ao uso desses procedimentos são discutidas. Como exemplos de aplicação, foram produzidos os estados pseudo-puros usados como estados iniciais de operações lógicas em RMN, bem como operações lógicas que foram posteriormente aplicadas aos mesmos. Utilizando os SMP\'s também foi possível realizar experimentalmente os algoritmos quânticos de Grover e Deutsch-Jozsa para 3 q-bits. A fidelidade das implementações experimentais foi determinadas utilizando as matrizes densidade experimentais obtidas utilizando um método de tomografia da matriz densidade previamente desenvolvido. / This dissertation presents the development and use of radiofrequency pulses simultaneously modulated in frequency, amplitude and phase (Strongly Modulated Pulses, SMP) for creating initial states and executing logical operations used as building blocks for Quantum Information Processing via Nuclear Magnetic Resonance (NMR-QIP). The experimental implementations were carried out in a 3 qubits system accomplished by Cesium 133 nuclei (nuclear spin 7/2) in a nematic liquid crystal. The SMP pulses were theoretically constructed using a home made computer program, which is based in the Simplex Nelder-Mead optimization procedure. Using this program, the SMP were optimized to the desired quantum logical operation with shorter durations than those achieved with conventional sequence of pulses and free evolutions as used in most NMR applications. This has the advantage of reducing decoherence effects that may appear as a results of the system relaxation. The main theoretical concepts are discussed together with the main experimental difficulties found in the SMP optimizations and executions. As application examples, the pseudo-pure state used as input for NMR-QIP and a 3 qubit logical gate were obtained. Besides, using the SMP\'s, the Grover and Deutsch-Jozsa quantum algorithms were experimentally executed. The experimental performance of the implementations was evaluated by a fidelity parameter calculated from the output density matrix, which were obtained using a quantum state tomography method previously developed.
4

Studies Of A Quantum Scheduling Algorithm And On Quantum Error Correction

Lu, Feng 01 January 2007 (has links)
Quantum computation has been a rich field of study for decades because it promises possible spectacular advances, some of which may run counter to our classically rooted intuitions. At the same time, quantum computation is still in its infancy in both theoretical and practical areas. Efficient quantum algorithms are very limited in number and scope; no real breakthrough has yet been achieved in physical implementations. Grover's search algorithm can be applied to a wide range of problems; even problems not generally regarded as searching problems can be reformulated to take advantage of quantum parallelism and entanglement leading to algorithms which show a square root speedup over their classical counterparts. This dissertation discusses a systematic way to formulate such problems and gives as an example a quantum scheduling algorithm for an R||C_max problem. This thesis shows that quantum solution to such problems is not only feasible but in some cases advantageous. The complexity of the error correction circuitry forces us to design quantum error correction codes capable of correcting only a single error per error correction cycle. Yet, time-correlated errors are common for physical implementations of quantum systems; an error corrected during a certain cycle may reoccur in a later cycle due to physical processes specific to each physical implementation of the qubits. This dissertation discusses quantum error correction for a restricted class of time-correlated errors in a spin-boson model. The algorithm proposed allows the correction of two errors per error correction cycle, provided that one of them is time-correlated. The algorithm can be applied to any stabilizer code, perfect or non-perfect, and simplified the circuit complexity significantly comparing to the classic quantum error correction codes.
5

Solving Chromatic Number with Quantum Search and Quantum Counting

Lutze, David 01 June 2021 (has links) (PDF)
This thesis presents a novel quantum algorithm that solves the Chromatic Number problem. Complexity analysis of this algorithm revealed a run time of O(2n/2n2(log2n)2). This is an improvement over the best known algorithm, with a run time of 2nnO(1) [1]. This algorithm uses the Quantum Search algorithm (often called Grover's Algorithm), and the Quantum Counting algorithm. Chromatic Number is an example of an NP-Hard problem, which suggests that other NP-Hard problems can also benefit from a speed-up provided by quantum technology. This has wide implications as many real world problems can be framed as NP-Hard problems, so any speed-up in the solution of these problems is highly sought after. A bulk of this thesis consists of a review of the underlying principles of quantum mechanics and quantum computing, building to the Quantum Search and Quantum Counting algorithms. The review is written with the assumption that the reader has no prior knowledge on quantum computing. This culminates with a presentation of algorithms for generating the quantum circuits required to solve K-Coloring and Chromatic Number.
6

Quantum algorithms for many-body structure and dynamics

Turro, Francesco 10 June 2022 (has links)
Nuclei are objects made of nucleons, protons and neutrons. Several dynamical processes that occur in nuclei are of great interest for the scientific community and for possible applications. For example, nuclear fusion can help us produce a large amount of energy with a limited use of resources and environmental impact. Few-nucleon scattering is an essential ingredient to understand and describe the physics of the core of a star. The classical computational algorithms that aim to simulate microscopic quantum systems suffer from the exponential growth of the computational time when the number of particles is increased. Even using today's most powerful HPC devices, the simulation of many processes, such as the nuclear scattering and fusion, is out of reach due to the excessive amount of computational time needed. In the 1980s, Feynman suggested that quantum computers might be more efficient than classical devices in simulating many-particle quantum systems. Following Feynman's idea of quantum computing, a complete change in the computation devices and in the simulation protocols has been explored in the recent years, moving towards quantum computations. Recently, the perspective of a realistic implementation of efficient quantum calculations was proved both experimentally and theoretically. Nevertheless, we are not in an era of fully functional quantum devices yet, but rather in the so-called "Noisy Intermediate-Scale Quantum" (NISQ) era. As of today, quantum simulations still suffer from the limitations of imperfect gate implementations and the quantum noise of the machine that impair the performance of the device. In this NISQ era, studies of complex nuclear systems are out of reach. The evolution and improvement of quantum devices will hopefully help us solve hard quantum problems in the coming years. At present quantum machines can be used to produce demonstrations or, at best, preliminary studies of the dynamics of a few nucleons systems (or other equivalent simple quantum systems). These systems are to be considered mostly toy models for developing prospective quantum algorithms. However, in the future, these algorithms may become efficient enough to allow simulating complex quantum systems in a quantum device, proving more efficient than classical devices, and eventually helping us study hard quantum systems. This is the main goal of this work, developing quantum algorithms, potentially useful in studying the quantum many body problem, and attempting to implement such quantum algorithms in different, existing quantum devices. In particular, the simulations made use of the IBM QPU's , of the Advanced Quantum Testbed (AQT) at Lawrence Berkeley National Laboratory (LBNL), and of the quantum testbed recently based at Lawrence Livermore National Laboratory (LLNL) (or using a device-level simulator of this machine). The our research aims are to develop quantum algorithms for general quantum processors. Therefore, the same developed quantum algorithms are implemented in different quantum processors to test their efficiency. Moreover, some uses of quantum processors are also conditioned by their availability during the time span of my PhD. The most common way to implement some quantum algorithms is to combine a discrete set of so-called elementary gates. A quantum operation is then realized in term of a sequence of such gates. This approach suffers from the large number of gates (depth of a quantum circuit) generally needed to describe the dynamics of a complex system. An excessively large circuit depth is problematic, since the presence of quantum noise would effectively erase all the information during the simulation. It is still possible to use error-correction techniques, but they require a huge amount of extra quantum register (ancilla qubits). An alternative technique that can be used to address these problems is the so-called "optimal control technique". Specifically, rather than employing a set of pre-packaged quantum gates, it is possible to optimize the external physical drive (for example, a suitably modulated electromagnetic pulse) that encodes a multi-level complex quantum gate. In this thesis, we start from the work of Holland et al. "Optimal control for the quantum simulation of nuclear dynamics" Physical Review A 101.6 (2020): 062307, where a quantum simulation of real-time neutron-neutron dynamics is proposed, in which the propagation of the system is enacted by a single dense multi-level gate derived from the nuclear spin-interaction at leading order (LO) of chiral effective field theory (EFT) through an optimal control technique. Hence, we will generalize the two neutron spin simulations, re-including spatial degrees of freedom with a hybrid algorithm. The spin dynamics are implemented within the quantum processor and the spatial dynamics are computed applying classical algorithms. We called this method classical-quantum coprocessing. The quantum simulations using optimized optimal control methods and discrete get set approach will be presented. By applying the coprocessing scheme through the optimal control, we have a possible bottleneck due to the requested classical computational time to compute the microwave pulses. A solution to this problem will be presented. Furthermore, an investigation of an improved way to efficiently compile quantum circuits based on the Similarity Renormalization Group will be discussed. This method simplifies the compilation in terms of digital gates. The most important result contained in this thesis is the development of an algorithm for performing an imaginary time propagation on a quantum chip. It belongs to the class of methods for evaluating the ground state of a quantum system, based on operating a Wick rotation of the real time evolution operator. The resulting propagator is not unitary, implementing in some way a dissipation mechanism that naturally leads the system towards its lowest energy state. Evolution in imaginary time is a well-known technique for finding the ground state of quantum many-body systems. It is at the heart of several numerical methods, including Quantum Monte Carlo techniques, that have been used with great success in quantum chemistry, condensed matter and nuclear physics. The classical implementations of imaginary time propagation suffer (with few exceptions) of an exponential increase in the computational cost with the dimension of the system. This fact calls for a generalization of the algorithm to quantum computers. The proposed algorithm is implemented by expanding the Hilbert space of the system under investigation by means of ancillary qubits. The projection is obtained by applying a series of unitary transformations having the effect of dissipating the components of the initial state along excited states of the Hamiltonian into the ancillary space. A measurement of the ancillary qubit(s) will then remove such components, effectively implementing a "cooling" of the system. The theory and testing of this method, along with some proposals for improvements will be thoroughly discussed in the dedicated chapter.
7

Quantum Algorithm for the Non Abelian Hidden Subgroup Problem / Algoritmos Quânticos para o Problema do Subgrupo Oculto não Abeliano

Carlos Magno Martins Cosme 13 March 2008 (has links)
We present an efficient quantum algorithm for the Hidden Subgroup Problem (HSP) on the semidirect product of the cyclic groups and , where is any odd prime number, and are positives integers and the homomorphism which defines the group is given by the root such that . As a consequence we can solve efficiently de HSP on the semidirect product of the groups by , where has a special prime factorization. / Neste trabalho apresentamos um algoritmo quântico eficiente para o Problema do Subgrupos Oculto (PSO) no produto semidireto dos grupos cíclicos e , onde é qualquer número primo ímpar, e são inteiros positivos e o homomorfismo que define o grupo é dado por uma raiz para a qual . Como conseqüência, podemos resolver eficientemente o PSO também no produto semidireto dos grupos por , onde o inteiro possui uma especial fatoração prima.
8

Development of SiOxNy waveguides for integrated quantum photonics

Floether, Frederik January 2015 (has links)
The development of integrated quantum photonics is integral to many areas of quantum information science, in particular linear optical quantum computing. In this context, a diversity of physical systems is being explored and thus versatility and adaptability are important prerequisites for any candidate platform. Silicon oxynitride is a promising material because its refractive index can be varied over a wide range. This dissertation describes the development of silicon oxynitride waveguides for applications in the field of integrated quantum photonics. The project consisted of three stages: design, characterisation, and application. First, the parameter space was studied through simulations. The structures were optimised to achieve low-loss devices with a small footprint at a wavelength of 900 nm. Buried channel waveguides with a cross-section of 1.6 ?m x 1.6 ?m and a core (cladding) refractive index of 1.545 (1.505) were chosen. Second, following their fabrication with plasma-enhanced chemical vapour deposition, electron beam lithography, and reactive ion etching, the waveguides were characterised. The refractive index was shown to be tunable from the silica to the silicon nitride regime. Optimised tapers significantly improved the coupling efficiency. The minimum bend radius was measured to be less than 2 mm. Propagation losses as low as 1.45 dB cm-1 were achieved. Directional couplers with coupling ratios ranging from 0 to 1 were realised. Third, building blocks for linear optical quantum computing were demonstrated. Reconfigurable quantum circuits consisting of Mach-Zehnder interferometers with near perfect visibilities were fabricated along with a four-port switch. The potential of quantum speedup was illustrated by carrying out the Deutsch-Jozsa algorithm with a fidelity of 100 % using on-demand single photons from a quantum dot. This dissertation presents the first implementation of tunable Mach-Zehnder interferometers, which act on single photons, based on silicon oxynitride waveguides. Furthermore, for the first time silicon oxynitride photonic quantum circuits were operated with on-demand single photons. Accordingly, this work has created a platform for the development of integrated quantum photonics.
9

Shorův algoritmus v kvantové kryptografii / Shor's algorithm in Quantum Cryptography

Nwaokocha, Martyns January 2021 (has links)
Kryptografie je velmi důležitým aspektem našeho každodenního života, protože poskytuje teoretický základ informační bezpečnosti. Kvantové výpočty a informace se také stávají velmi důležitou oblastí vědy kvůli mnoha aplikačním oblastem včetně kryptologie a konkrétněji v kryptografii veřejných klíčů. Obtížnost čísel do hlavních faktorů je základem některých důležitých veřejných kryptosystémů, jejichž klíčem je kryptosystém RSA . Shorův kvantový faktoringový al-goritmus využívá zejména kvantový interferenční účinek kvantového výpočtu k faktorovým semi-prime číslům v polynomiálním čase na kvantovém počítači. Ačkoli kapacita současných kvantových počítačů vykonávat Shorův algoritmus je velmi omezená, existuje mnoho rozsáhlých základních vědeckých výzkumů o různých technikách optimalizace algoritmu, pokud jde o faktory, jako je počet qubitů, hloubka obvodu a počet bran. v této práci jsou diskutovány, analyzovány a porovnávány různé varianty Shorova factoringového algoritmu a kvantových obvodů. Některé varianty Shorova algoritmu jsou také simulované a skutečně prováděné na simulátorech a kvantových počítačích na platformě IBM QuantumExperience. Výsledky simulace jsou porovnávány z hlediska jejich složitosti a míry úspěšnosti. Organizace práce je následující: Kapitola 1 pojednává o některých klíčových historických výsledcích kvantové kryptografie, uvádí problém diskutovaný v této práci a představuje cíle, kterých má být dosaženo. Kapitola 2 shrnuje matematické základy kvantového výpočtu a kryptografie veřejných klíčů a popisuje notaci použitou v celé práci. To také vysvětluje, jak lze k rozbití kryptosystému RSA použít realizovatelný algoritmus pro vyhledávání objednávek nebo factoring. Kapitola 3 představuje stavební kameny Shorova algoritmu, včetně kvantové Fourierovy transformace, kvantového odhadu fází, modulární exponentiace a Shorova algoritmu. Zde jsou také uvedeny a porovnány různé varianty optimalizace kvantových obvodů. Kapitola 4 představuje výsledky simulací různých verzí Shorova algoritmu. V kapitole 5 pojednejte o dosažení cílů disertační práce, shrňte výsledky výzkumu a nastíňte budoucí směry výzkumu.
10

Algoritmos quânticos para o problema do subgrupo oculto não Abeliano / Quantum Algorithm for the Non Abelian Hidden Subgroup Problem

Cosme, Carlos Magno Martins 13 March 2008 (has links)
Made available in DSpace on 2015-03-04T18:50:57Z (GMT). No. of bitstreams: 1 Tese-Carlos-Magno1.pdf: 616333 bytes, checksum: 65e51c95902afd18d11a1d7366653fc0 (MD5) Previous issue date: 2008-03-13 / Conselho Nacional de Desenvolvimento Cientifico e Tecnologico / We present an efficient quantum algorithm for the Hidden Subgroup Problem (HSP) on the semidirect product of the cyclic groups and , where is any odd prime number, and are positives integers and the homomorphism which defines the group is given by the root such that . As a consequence we can solve efficiently de HSP on the semidirect product of the groups by , where has a special prime factorization. / Neste trabalho apresentamos um algoritmo quântico eficiente para o Problema do Subgrupos Oculto (PSO) no produto semidireto dos grupos cíclicos e , onde é qualquer número primo ímpar, e são inteiros positivos e o homomorfismo que define o grupo é dado por uma raiz para a qual . Como conseqüência, podemos resolver eficientemente o PSO também no produto semidireto dos grupos por , onde o inteiro possui uma especial fatoração prima.

Page generated in 0.0411 seconds