Spelling suggestions: "subject:"kuantum computing"" "subject:"auantum computing""
91 |
Saturated absorption spectroscopy of rubidium and feedback control of LASER frequency for Doppler coolingWyngaard, Adrian Leigh January 2018 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2018. / This research investigates the absorption spectra of rubidium and the feedback
control of an external cavity diode laser. This research is a necessary
prerequisite for laser (Doppler) cooling and trapping of rubidium atoms.
Cooling rubidium atoms down to such low temperatures can be achieved
using the Doppler cooling technique. Here a laser is tuned to remain resonant
with a speci c atomic transition. To do this, the absorption spectra of
rubidium must therefore be observed. All of the above require a reasonable
knowledge about topics such as atomic physics, laser cooling and trapping,
feedback control systems, and absorption spectroscopy. A discussion of these
topics is provided.
We have utilised an experimental setup which allowed for measurements
of the Doppler broadened and Doppler free absorption spectra of rubidium,
as well the analysis of the Zeeman e ect on the Doppler free spectra. The
setup consisted of a saturated absorption spectrometer for high resolution
spectroscopy and a Michelson interferometer for calibrating our measurements.
In analysing the Zeeman e ect we added a set of Helmholtz coils to
the saturated absorption spectroscopy arrangement to measure the splitting
of the hyper ne energy levels. / French South African Institute of Technology (F'SATI)
National Research Foundation
|
92 |
Bounds on computation from physical principlesLee, Ciaran M. January 2017 (has links)
The advent of quantum computing has challenged classical conceptions of which problems are efficiently solvable in our physical world. This raises the general question of what broad relationships exist between physical principles and computation. The current thesis explores this question within the operationally-defined framework of generalised probabilistic theories. In particular, we investigate the limits on computational power imposed by simple physical principles. At present, the best known upper bound on the power of quantum computers is that <b>BQP</b> is contained in <b>AWPP</b>, where <b>AWPP</b> is a classical complexity class contained in PP. We define a circuit-based model of computation in the above mentioned operational framework and show that in theories where local measurements suffice for tomography, efficient computations are also contained in <b>AWPP</b>. Moreover, we explicitly construct a theory in which the class of efficiently solvable problems exactly equals <b>AWPP</b>, showing this containment to be tight. We also investigate how simple physical principles bound the power of computational paradigms which combine computation and communication in a non-trivial fashion, such as interactive proof systems. Additionally, we show how some of the essential components of computational algorithms arise from certain natural physical principles. We use these results to investigate the relationship between interference behaviour and computational power, demonstrating that non-trivial interference behaviour is a general resource for post-classical computation. We then investigate whether post-quantum interference is a resource for post-quantum computation. Sorkin has defined a hierarchy of possible post-quantum interference behaviours where, informally, the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. In quantum theory, at most pairs of paths can ever interact in a fundamental way. We consider how Grover's speed-up depends on the order of interference in a theory, and show that, surprisingly, the quadratic lower bound holds regardless of the order of interference.
|
93 |
Quantum Algorithm AnimatorNicholson, Lori Eileen 01 January 2010 (has links)
The design and development of quantum algorithms present a challenge, especially for inexperienced computer science students. Despite the numerous common concepts with classical computer science, quantum computation is still considered a branch of theoretical physics not commonly used by computer scientists. Experimental research into the development of a quantum computer makes the use of quantum mechanics in organizing computation more attractive, however the physical realization of a working quantum computer may still be decades away.
This study introduces quantum computing to computer science students using a quantum algorithm animator called QuAL. QuAL's design uses features common to classical algorithm animators guided by an exploratory study but refined to animate the esoteric and interesting aspects of quantum algorithms.
In addition, this study investigates the potential for the animation of a quantum sorting algorithm to help novice computer science students understand the formidable concepts of quantum computing. The animations focus on the concepts required to understand enough about quantum algorithms to entice student interest and promote the integration of quantum computational concepts into computer science applications and curricula.
The experimental case study showed no significant improvement in student learning when using QuAL's initial prototype. Possible reasons include the animator's presentation of concepts and the study's pedagogical framework such as choice of algorithm (Wallace and Narayanan's sorting algorithm), design of pre- and post tests, and the study's small size (20 students) and brief duration (2 hours). Nonetheless, the animation system was well received by students. Future work includes enhancing this animation tool for illustrating elusive concepts in quantum computing.
|
94 |
Electronique cryogénique et réalisation de boîtes quantiques sur substrat SOI pour le calcul quantique / Cryogenic electronics and quantum dots on silicon-on-insulator for quantum computingBohuslavskyi, Heorhii 14 December 2018 (has links)
Cette thèse étudie l’électronique cryogénique et la réalisation de boîtes quantiques (QD) sur substrat SOI pour le calcul quantique. Deux technologies sont proposées pour la démonstration de boîtes quantiques d’électrons/trous. La première s’appuie sur les dispositifs Trigate SOI développés au CEA-LETI et la seconde exploite la technologie FD-SOI 28nm développée par STMicroelectronics. Dans un premier temps, les dispositifs à double-grille du LETI sont mesurés à très basse température (60mK) pour mettre en avant le principe d’exclusion de Pauli pour les premiers trous confinés à l’intérieur des deux QD. Au travers de cette expérience réalisée sur un double QD nous étudions une brique élémentaire permettant à terme l’initialisation et la lecture d’un qubit. Cette expérience a par la suite été étendue à d’autres dispositifs possédant quatre grilles pour lesquels un protocole de mesure est proposé pour la démonstration de deux qubits de spin d’électron. Dans un second temps, nous avons adressé la question du contrôle, de la lecture et de la manipulation des qubits de spin par une électronique pouvant fonctionner à basse température. Les performances digitales et analogiques des transistors FD-SOI ont été étudiées sur une large gamme de température. La réduction de la température montre une nette amélioration de la mobilité des électrons et des trous mais également une plus faible pente sous le seuil (SS) qui s’accompagne également d’une augmentation de la tension de seuil (Vth). La saturation de la SS pour les faibles températures est expliquée à l’aide d’un modèle analytique développé dans le cadre de cette thèse. En modélisant une queue étroite de densité d'états près des bords des bandes de conduction et de valence et en utilisant la statistique de Fermi-Dirac, un excellent accord est obtenu entre les mesures et le modèle. L’ajout d’une variation exponentielle dans la densité de pièges d’interface permet de reproduire l’évolution de la SS sur plus de 6 décades de courant. Par ailleurs, nous montrons que l’effet d’une polarisation face arrière qui permet d’ajuster la Vth des transistors FD-SOI pour viser des applications haute performance ou basse consommation fonctionne parfaitement à basse température. La modulation de la Vth reste la même de 300K à 4K pour les grandes et petites longueurs de grille des transistors NMOS/PMOS. Afin de tirer avantage de la technologie FD-SOI et d’évaluer son intérêt pour l’électronique cryogénique, nous avons caractérisé plusieurs oscillateurs en anneaux (RO) jusqu’à 4K. L’étude a été réalisée en deux temps. Dans un premier temps, l’augmentation de la Vth à basse température n’a pas été corrigée. Puis, cette augmentation de la Vth a été corrigée grâce à la polarisation face arrière afin de conserver la même Vth que celle mesurée à 300K. Afin de conserver les avantages tirés des plus fortes mobilités des porteurs à basse température, nous montrons que la Vth doit être corrigée pour réduire significativement le délai de commutation d’une chaine d’inverseurs. Nous montrons qu’à 4K un régime de fonctionnement optimal alliant à la fois haute performance et basse consommation peut être obtenu avec une tension d’alimentation (VDD) de 0.3V contre 1V à 300K. Cela permet de réduire de façon significative la dissipation statique et dynamique des RO. Un produit Energie-Délai de 6.9fJ.ps avec un délai par étage de 37ps sont obtenus à VDD = 0.325V grâce à l’utilisation de la polarisation face arrière. Pour finir, nous discutons de la dualité des transistors FD-SOI canal court qui peuvent être utilisés soit comme MOSFET ou comme transistors à électron unique. La présence de QD dans les transistors FDSOI est démontrée avec des caractéristiques proches de celles obtenues avec d’autres architectures (type nanofil) offrant ainsi des perspectives intéressantes pour une future co-intégration d’une électronique cryogénique avec des qubits de spin réalisés à partir d’une même plateforme industrielle. / This thesis studies cryogenic electronics and quantum dots on silicon-on-insulator (SOI) for quantum computing. Different types of electron and hole quantum dots are fabricated with Leti's SOI nanowire (NW) and planar 28nm FD-SOI technology. In the first part, Pauli Spin Blockade (PSB) is studied for the first holes down to 60mK. We show that it is governed by a strong spin orbit coupling (SOC). The intradot relaxation rate of 120kHz was found for the first holes. The access barriers tunability realized with additional gates was proven to be efficient regarding the isolation of qubit from source/drain metallic leads. Following the recent demonstration of electron-dipole spin resonance (EDSR) achieved in electron quantum dots confined in the corners of silicon nanowire (CDs), we deeply investigated quantum dots in several multi-gate samples under different body-biasing conditions. Based on preliminary cryogenic transport measurements, an operation protocol for a compact two electron spin qubit gate has been proposed.Regarding cryogenic electronics required for an efficient control, manipulation and read-out of a large number of qubits, the low temperature digital and analog performance of 28nm FD-SOI MOSFETs was analysed from room temperature down to 4K. Significant improvements in transistor performance are achieved with a clear enhancement of carrier mobility and a strong reduction of subthreshold swing (SS), even for short-channel devices with gate length down to 28nm. The saturation of the subthreshold swing at low temperature is explained with a new analytical model developed in this thesis. By introducing a narrow tail in the density of states at the edges of the conduction and valence bands and using the Fermi-Dirac statistics, an excellent agreement of SS is achieved between experiments and modelling. The analysis of the SS-IDS metric under different forward body-biasing (FBB) conditions has revealed that the increased density of interface traps cannot be responsible for the SS saturation at low temperature. By adding a slight exponential variation in the interface trap density, we show that the SS-IDS curve can be well reproduced over more than 6 decades, paving a way for an efficient cryogenic design of CryoCMOS.In a second time, cryogenic performance of Ring Oscillators (RO) down to 4K was investigated. We have shown that the optimal supply voltage can be reduced down to 0.3V. This allows to efficiently reduce the dynamic and static power dissipations. At the same time, a small Energy-Delay product of 6.9fJ.ps with a delay per stage of 37ps were achieved at VDD=0.325V under aggressive FBB.Finally, in the last chapter, the duality of short-channel FD-SOI transistors operation as FETs or SETs is demonstrated at 4K. By benchmarking the QDs with respect to the common silicon platforms, we show that 28nm FD-SOI technology has a great potential for both cryogenic electronics and qubits.
|
95 |
Quantum Algorithm Development for Electronic Structure CalculationsTeng Bian (9751046) 14 December 2020 (has links)
<div>This dissertation concerns the development of quantum computing algorithms for solving electronic structure problems. Three projects are contained: comparison of quantum computing methods for the water molecule, the design and implementation of Fully Controlled Variational Quantum Eigensolver(FCVQE) method, and quantum computing for atomic and molecular resonances. </div><div> </div><div>Chapter 1 gives a general introduction to quantum computing and electronic structure calculations. It includes basic concepts in quantum computing, such as quantum bits (qubits), quantum gates, and an important quantum algorithm, Phase Estimation Algorithm(PEA). It also shows the procedure of molecular Hamiltonian derivation for quantum computers.</div><div><br></div><div> </div><div>Chapter 2 discusses several published quantum algorithms and original quantum algorithms to solve molecules' electronic structures, including the Trotter-PEA method, the first- and second-order Direct-PEA methods, Direct Measurement method, and pairwise Variational Quantum Eigensolver(VQE) method. These quantum algorithms are implemented into quantum circuits simulated by classical computers to solve the ground state energy and excited state energies of the water molecule. Detailed analysis is also given for each method's error and complexity. </div><div><br></div><div> </div><div>Chapter 3 proposes an original design for VQE, which is called Fully Controlled Variational Quantum Eigensolver(FCVQE). Based on Givens Rotation matrices, this design constructs ansatz preparation circuits exploring all possible states in the given space. This method is applied to solving the ground state energy curves for different molecules, including NaH, H<sub>2</sub>O, and N<sub>2</sub>. The results from simulators turn out to be accurate compared with exact solutions. Gate complexity is discussed at the end of the chapter.</div><div><br></div><div> </div><div>Chapter 4 attempts to apply quantum simulation to atomic and molecular resonances. The original design implements the molecule's resonance Hamiltonian into the quantum circuit, and the resonance properties can be obtained from the final measurement results. It is shown that the resonance energy and width of a model system can be calculated by executing the circuit using Qiskit simulators and IBM real quantum computers as well. A proof of concept is also shown for the resonance properties of a real molecule, H<sub>2</sub><sup>-</sup>. In the future, when there are more available qubits, longer coherence time, and less noise in quantum computers, this method can be used for larger molecular systems with better accuracy.</div>
|
96 |
Surface preparation and characterization of CVD and HPHT diamond for quantum computing applicationsDyachenko, Oleksiy 07 April 2016 (has links)
This work comprises studies addressing fundamental questions of the diamond surface physics for different doping concentrations of nitrogen and boron, and how doping is reflected in the core shell analysis, valance band structure and work function values. A second aspect of the work is the controllable creation of nitrogen-vacancy (NVs) centers accompanied by comprehensive surface spectroscopy studies (XPS,UPS and MIES). Additionally, in order to increase and stabilize NV negative (NV-), which are required for quantum computing system, studies on diverse oxygen termination procedures has been executed. The efficiency of oxygen termination procedures compared and is confirmed by spectroscopy and wet contact angle (WCA) measurements. Furthermore, an alternative method of hydrogen termination of the diamond surface is proposed and compared to the traditional hydrogen plasma termination. As related side aspect, the deposition of C60 molecules on the diamond surface is performed and investigated by means of UPS and MIES spectroscopy. A distinctive experimental capability of studies is the implementation of the Metastable Impact Electron Spectroscopy (MIES) spectroscopy. This unique surface spectroscopy technique and individual instrumentation design for probing the electronic structure of the outermost surface layer, including measurement examples is introduced in this work.
|
97 |
Realistic quantum information processing : from devices to computational models / Traitement réaliste de l'information quantique : des dispositifs aux modèles de calculDouce, Tom 09 September 2016 (has links)
La théorie du calcul quantique se situe à la frontière de la physique quantique et de l’informatique. Par conséquent, les deux domaines contribuent à la rendre d’autant plus riche en apportant leurs propres méthodes et outils mathématiques. La présente thèse tente de mettre en évidence cette particularité en traitant des problématiques qui vont la physique expérimentale aux modèles de calcul. Le but est d’offrir de nouvelles possibilités pour démontrer un avantage quantique. Après une brève introduction aux notions de base de la mécanique quantique, certains aspects liés à l’informatique sont discutés. Le formalisme des classes de complexité quantiques ainsi que le concept du calcul quantique en variables continues sont décrits. Ensuite, le modèle connu comme instantaneous quantum computing est traduit en variables continues, le rendant attrayant d’un point de vue expérimental. Le chapitre conclut sur une discussion concernant un protocole hybride impliquant l’algorithme de Grover dans le cadre des communications quantiques. La dernière partie de la thèse s’intéresse à des problématiques issues de la physique expérimentale. Le lien entre l’effet Hong-Ou-Mandel et la fonction de Wigner d’un état à deux photons est mise en évidence, et un protocole expérimental est décrit en conséquence. La suite traite du domaine des circuits supraconducteurs et envisage de possibles expériences. Il est montré comment utiliser un qubit de flux pour manipuler un centre coloré du diamant. Il est également décrit comment sonder le modèle de Rabi dans le régime de couplage ultra fort en utilisant un qubit supplémentaire faiblement couplé. / The theory of quantum computing lies at the very boundary between quantum physics and computer science. As such, both fields bring their own methods and mathematical tools to make quantum computing even richer. The present thesis attempts to reflect this specificity by addressing questions ranging from experimental physics to computational models. The goal is to provide novel ways of demonstrating quantum advantage. After a short introduction to basic notions of quantum mechanics, some computer science aspects are discussed. We describe the powerful formalism of quantum complexity classes and the concept of quantum computations based on continuous variables. We then translate the model of instantaneous quantum computing to continuous variables, which is experimentally appealing. The chapter concludes with a discussion on a hybrid protocol involving Grover’s algorithm in a quantum communication framework. The last part of the thesis is devoted to experimentally driven issues. A fundamental connection between the Hong-Ou-Mandel experiment and the Wigner function of two-photon states is derived and a verification protocol is designed accordingly. We then move to the field of superconducting circuits to discuss proposals for future experiments. We show how to use a flux qubit to manipulate a NV color center. We also describe how to use to probe the Rabi model in the ultra strong coupling regime using an additional weakly coupled qubit.
|
98 |
Spin Qubits in Photon-Coupled Microwave Cavities.Johnson, Samuel Thomas 05 June 2023 (has links)
No description available.
|
99 |
Single ytterbium atoms in an optical tweezer array: high-resolution spectroscopy, single-photon Rydberg excitation, and a scheme for nondestructive detection / 単一イッテルビウム原子光ピンセットアレイ:超狭線幅分光と1光子リドベルグ励起及び非破壊検出スキームOkuno, Daichi 25 July 2022 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(理学) / 甲第24123号 / 理博第4851号 / 新制||理||1694(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 高橋 義朗, 教授 石田 憲二, 教授 田中 耕一郎 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
100 |
Serial Biasing Technique for Rapid Single Flux Quantum CircuitsShukla, Ashish Jayant January 2023 (has links)
Superconductor electronics based on the Single Flux Quantum (SFQ) technology are considered a strong contender for the ‘beyond CMOS’ future of digital circuits because of the high speed and low power dissipation associated with them. In fact, digital operations beyond tens of GHz have been routinely demonstrated in the SFQ technology. These circuits have widespread applications such as high-speed analog-to-digital conversion, digital signal processing, high speed computing and in emerging topics such as control circuitry for superconducting quantum computing.
Rapid Single Flux Quantum (RSFQ) circuits have emerged as a promising candidate within the SFQ technology, with information encoded in picosecond wide, milli-volt voltage pulses. As is the case with any integrated circuit technology, scalability of RSFQ circuits is essential to realizing their applications. These circuits, based on the Josephson junction, require a DC bias current for the correct operation. The DC bias current requirement increases with circuit complexity, and this has multiple implications on circuit operation. Large currents produce magnetic fields that can interfere with logic operation. Furthermore, the heat load delivered to the superconducting chip also increases with current which could result in the circuit becoming ‘normal’ and not superconducting. These problems make reduction of the bias current necessary.
Serial Biasing (SB) is a bias current reduction technique, that has been proposed in the past. In this technique, a digital circuit is partitioned into multiple identical islands and bias current is provided to each island in a serial manner. While this scheme is promising, there are multiple challenges such as design of the driver-receiver pair circuit resulting in robust and wide operating bias margins, current management on the floating islands, etc.
This thesis investigates SB in a systematic manner, focusing on the design and measurement of the fundamental components of this technique with an emphasis on reliability and scalability. It presents works on circuit techniques achieving high speed serially biased RSFQ circuits with robust operating margins and the experimental evidence to support the ideas. It develops a framework for serial biasing that could be used by electronic design tools to automate design and synthesis of complex RSFQ circuits. It also investigates Passive Transmission Lines (PTLs) for use as passive interconnects between library cells in a complex design, reducing the DC bias current required by the active circuitry.
|
Page generated in 0.086 seconds