• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conflict processing in juvenile patients with neurofibromatosis type 1 (NF1) and healthy controls – Two pathways to success

Bluschke, Annet, von der Hagen, Maja, Papenhagen, Katharina, Roessner, Veit, Beste, Christian 25 July 2017 (has links) (PDF)
Neurofibromatosis Type 1 (NF1) is a monogenetic autosomal-dominant disorder with a broad spectrum of clinical symptoms and is commonly associated with cognitive deficits. Patients with NF1 frequently exhibit cognitive impairments like attention problems, working memory deficits and dysfunctional inhibitory control. The latter is also relevant for the resolution of cognitive conflicts. However, it is unclear how conflict monitoring processes are modulated in NF1. To examine this question in more detail, we used a system neurophysiological approach combining high-density ERP recordings with source localisation analyses in juvenile patients with NF1 and controls during a flanker task. Behaviourally, patients with NF1 perform significantly slower than controls. Specifically on trials with incompatible flanker-target pairings, however, the patients with NF1 made significantly fewer errors than healthy controls. Yet, importantly, this overall successful conflict resolution was reached via two different routes in the two groups. The healthy controls seem to arrive at a successful conflict monitoring performance through a developing conflict recognition via the N2 accompanied by a selectively enhanced N450 activation in the case of perceived flanker-target conflicts. The presumed dopamine deficiency in the patients with NF1 seems to result in a reduced ability to process conflicts via the N2. However, NF1 patients show an increased N450 irrespective of cognitive conflict. Activation differences in the orbitofrontal cortex (BA11) and anterior cingulate cortex (BA24) underlie these modulations. Taken together, juvenile patients with NF1 and juvenile healthy controls seem to accomplish conflict monitoring via two different cognitive neurophysiological pathways.
2

Conflict processing in juvenile patients with neurofibromatosis type 1 (NF1) and healthy controls – Two pathways to success

Bluschke, Annet, von der Hagen, Maja, Papenhagen, Katharina, Roessner, Veit, Beste, Christian 25 July 2017 (has links)
Neurofibromatosis Type 1 (NF1) is a monogenetic autosomal-dominant disorder with a broad spectrum of clinical symptoms and is commonly associated with cognitive deficits. Patients with NF1 frequently exhibit cognitive impairments like attention problems, working memory deficits and dysfunctional inhibitory control. The latter is also relevant for the resolution of cognitive conflicts. However, it is unclear how conflict monitoring processes are modulated in NF1. To examine this question in more detail, we used a system neurophysiological approach combining high-density ERP recordings with source localisation analyses in juvenile patients with NF1 and controls during a flanker task. Behaviourally, patients with NF1 perform significantly slower than controls. Specifically on trials with incompatible flanker-target pairings, however, the patients with NF1 made significantly fewer errors than healthy controls. Yet, importantly, this overall successful conflict resolution was reached via two different routes in the two groups. The healthy controls seem to arrive at a successful conflict monitoring performance through a developing conflict recognition via the N2 accompanied by a selectively enhanced N450 activation in the case of perceived flanker-target conflicts. The presumed dopamine deficiency in the patients with NF1 seems to result in a reduced ability to process conflicts via the N2. However, NF1 patients show an increased N450 irrespective of cognitive conflict. Activation differences in the orbitofrontal cortex (BA11) and anterior cingulate cortex (BA24) underlie these modulations. Taken together, juvenile patients with NF1 and juvenile healthy controls seem to accomplish conflict monitoring via two different cognitive neurophysiological pathways.
3

The neural stability of perception-motor representations affects action outcomes and behavioral adaptation

Yu, Shijing, Mückschel, Moritz, Hoffmann, Sven, Bluschke, Annet, Pscherer, Charlotte, Beste, Christian 22 April 2024 (has links)
Actions can fail - even though this is well known, little is known about what distinguishes neurophysiological processes preceding errors and correct actions. In this study, relying on the Theory of Event Coding, we test the assumption that only specific aspects of information coded in EEG activity are relevant for understanding processes leading to response errors. We examined N = 69 healthy participants who performed a mental rotation task and combined temporal EEG signal decomposition with multivariate pattern analysis (MVPA) and source localization analyses. We show that fractions of the EEG signal, primarily representing stimulus-response translation (event file) processes and motor response representations, are essential. Stimulus representations were less critical. The source localization results revealed widespread activity modulations in structures including the frontopolar, the middle and superior frontal, the anterior cingulate cortex, the cuneus, the inferior parietal cortex, and the ventral stream regions. These are associated with differential effects of the neural dynamics preceding correct/erroneous responses. The temporal-generalization MVPA showed that event file representations and representations of the motor response were already distinct 200 ms after stimulus presentation and this lasted till around 700 ms. The stability of this representational content was predictive for the magnitude of posterror slowing, which was particularly strong when there was no clear distinction between the neural activity profile of event file representations associated with a correct or an erroneous response. The study provides a detailed analysis of the dynamics leading to an error/correct response in connection to an overarching framework on action control.

Page generated in 0.1065 seconds