Spelling suggestions: "subject:"query by axample"" "subject:"query by cxample""
1 |
Interactive Classification Of Satellite Image Content Based On Query By ExampleDalay, Oral 01 January 2006 (has links) (PDF)
In our attempt to construct a semantic filter for satellite image content, we have built a software that allows user to indicate a few number of image regions that contains a specific geographical object, such as, a bridge, and to retrieve similar objects on the same satellite image. We are particularly interested in performing a data analysis approach based on user interaction. User can guide the classification procedure by interaction and visual observation of the results. We have applied a two step procedure for this and preliminary results show that we eliminate many true negatives while keeping most of the true positives.
|
2 |
Automatic Annotation Of Database Images For Query-by-conceptHiransakolwong, Nualsawat 01 January 2004 (has links)
As digital images become ubiquitous in many applications, the need for efficient and effective retrieval techniques is more demanding than ever. Query by Example (QBE) and Query by Concept (QBC) are among the most popular query models. The former model accepts example images as queries and searches for similar ones based on low-level features such as colors and textures. The latter model allows queries to be expressed in the form of high-level semantics or concept words, such as "boat" or "car," and finds images that match the specified concepts. Recent research has focused on the connections between these two models and attempts to close the semantic-gap between them. This research involves finding the best method that maps a set of low-level features into high-level concepts. Automatic annotation techniques are investigated in this dissertation to facilitate QBC. In this approach, sets of training images are used to discover the relationship between low-level features and predetermined high-level concepts. The best mapping with respect to the training sets is proposed and used to analyze images, annotating them with the matched concept words. One principal difference between QBE and QBC is that, while similarity matching in QBE must be done at the query time, QBC performs concept exploration off-line. This difference allows QBC techniques to shift the time-consuming task of determining similarity away from the query time, thus facilitating the additional processing time required for increasingly accurate matching. Consequently, QBC's primary design objective is to achieve accurate annotation within a reasonable processing time. This objective is the guiding principle in the design of the following proposed methods which facilitate image annotation: 1.A novel dynamic similarity function. This technique allows users to query with multiple examples: relevant, irrelevant or neutral. It uses the range distance in each group to automatically determine weights in the distance function. Among the advantages of this technique are higher precision and recall rates with fast matching time. 2.Object recognition based on skeletal graphs. The topologies of objects' skeletal graphs are captured and compared at the node level. Such graph representation allows preservation of the skeletal graph's coherence without sacrificing the flexibility of matching similar portions of graphs across different levels. The technique is robust to translation, scaling, and rotation invariants at object level. This technique achieves high precision and recall rates with reasonable matching time and storage space. 3.ASIA (Automatic Sampling-based Image Annotation) is a technique based on a new sampling-based matching framework allowing users to identify their area of interest. ASIA eliminates noise, or irrelevant areas of the image. ASIA is robust to translation, scaling, and rotation invariants at the object level. This technique also achieves high precision and recall rates. While the above techniques may not be the fastest when contrasted with some other recent QBE techniques, they very effectively perform image annotation. The results of applying these processes are accurately annotated database images to which QBC may then be applied. The results of extensive experiments are presented to substantiate the performance advantages of the proposed techniques and allow them to be compared with other recent high-performance techniques. Additionally, a discussion on merging the proposed techniques into a highly effective annotation system is also detailed.
|
3 |
Query By Example Keyword SpottingSunde Valfridsson, Jonas January 2021 (has links)
Voice user interfaces have been growing in popularity and with them an interest for open vocabulary keyword spotting. In this thesis we focus on one particular approach to open vocabulary keyword spotting, query by example keyword spotting. Three types of query by example keyword spotting approaches are described and evaluated: sequence distances, speech to phonemes and deep distance learning. Evaluation is done on a series of custom tasks designed to measure a variety of aspects. The Google Speech Commands benchmark is used for evaluation as well, this to make it more comparable to existing works. From the results, the deep distance learning approach seem most promising in most environments except when memory is very constrained; in which sequence distances might be considered. The speech to phonemes methods is lacking in the usability evaluation. / Röstgränssnitt har växt i populäritet och med dem ett intresse för öppenvokabulärnyckelordsigenkänning. I den här uppsatsen fokuserar vi på en specifik form av öppenvokabulärnyckelordsigenkänning, den s.k nyckelordsigenkänning- genom- exempel. Tre typer av nyckelordsigenkänning- genom- exempel metoder beskrivs och utvärderas: sekvensavstånd, tal till fonem samt djupavståndsinlärning. Utvärdering görs på konstruerade uppgifter designade att mäta en mängd olika aspekter hos metoderna. Google Speech Commands data används för utvärderingen också, detta för att göra det mer jämförbart mot existerade arbeten. Från resultaten framgår det att djupavståndsinlärning verkar mest lovande förutom i miljöer där resurser är väldigt begränsade; i dessa kan sekvensavstånd vara av intresse. Tal till fonem metoderna visar brister i användningsuvärderingen.
|
4 |
A Generic Language for Query and Viewtype Generation By-ExampleWerner, Christopher, Wimmer, Manuel, Aßmann, Uwe 02 July 2021 (has links)
In model-driven engineering, powerful query/view languages exist to compute result sets/views from underlying models. However, to use these languages effectively, one must understand the query/view language concepts as well as the underlying models and metamodels structures. Consequently, it is a challenge for domain experts to create queries/views due to the lack of knowledge about the computer-internal abstract representation of models and metamodels. To better support domain experts in the query/view creation, the goal of this paper is the presentation of a generic concept to specify queries/views on models without requiring deep knowledge on the realization of modeling languages. The proposed concept is agnostic to specific modeling languages and allows the query/view generation by-example with a simple mechanism for filtering model elements. Based on this generic concept, a generic query/view language is proposed that uses role-oriented modeling for its non-intrusive application for specific modeling languages. The proposed language is demonstrated based on the role-based single underlying model (RSUM) approach for AutomationML to create queries/views by-example, and subsequently, associated viewtypes to modify the result set or view.
|
5 |
Semantic Classification And Retrieval System For Environmental SoundsOkuyucu, Cigdem 01 October 2012 (has links) (PDF)
The growth of multimedia content in recent years motivated the research on audio classification and content retrieval area. In this thesis, a general environmental audio classification and retrieval approach is proposed in which higher level semantic classes (outdoor, nature, meeting and violence) are obtained from lower level acoustic classes (emergency alarm, car horn, gun-shot, explosion, automobile, motorcycle, helicopter, wind, water, rain, applause, crowd and laughter). In order to classify an audio sample into acoustic classes, MPEG-7 audio features, Mel Frequency Cepstral Coefficients (MFCC) feature and Zero Crossing Rate (ZCR) feature are used with Hidden Markov Model (HMM) and Support Vector Machine (SVM) classifiers. Additionally, a new classification method is proposed using Genetic Algorithm (GA) for classification of semantic classes. Query by Example (QBE) and keyword-based query capabilities are implemented for content retrieval.
|
6 |
Query-by-Example Keyword Spotting / Query-by-Example Keyword SpottingSkácel, Miroslav January 2015 (has links)
Tato diplomová práce se zabývá moderními přístupy detekce klíčových slov a detekce frází v řečových datech. V úvodní části je seznámení s problematikou a teoretický popis metod pro detekci. Následuje popis reprezentace vstupních datových sad použitých při experimentech a evaluaci. Dále jsou uvedeny metody pro detekci klíčových slov definovaných vzorem. Následně jsou popsány evaluační metody a techniky použité pro skórování. Po provedení experimentů na datových sadách a po evaluaci jsou diskutovány výsledky. V dalším kroku jsou navrženy a poté implementovány moderní postupy vedoucí k vylepšení systému pro detekci a opět je provedena evaluace a diskuze dosažených výsledků. V závěrečné části je práce zhodnocena a jsou zde navrženy další směy vývoje našeho systému. Příloha obsahuje manuál pro používání implementovaných skriptů.
|
7 |
Vyhledávání v hudebních signálech / Search in Music SignalsSkála, František January 2012 (has links)
This work contains overview of methods used in the area of Music Information Retrieval, mainly for purposes of searching of musical recordings. Several existing services in the areas of music identification and searching are presented and their methods for unique song identification are described. This work also focuses on possible modifications of these algorithms for searching of cover versions of songs and for the possibility of searching based on voice created examples.
|
8 |
Vyhledávání výrazů v řeči pomocí mluvených příkladů / Query-by-Example Spoken Term DetectionFapšo, Michal January 2014 (has links)
Tato práce se zabývá vyhledáváním výrazů v řeči pomocí mluvených příkladů (QbE STD). Výrazy jsou zadávány v mluvené podobě a jsou vyhledány v množině řečových nahrávek, výstupem vyhledávání je seznam detekcí s jejich skóre a časováním. V práci popisujeme, analyzujeme a srovnáváme tři různé přístupy ke QbE STD v jazykově závislých a jazykově nezávislých podmínkách, s jedním a pěti příklady na dotaz. Pro naše experimenty jsme použili česká, maďarská, anglická a arabská (levantská) data, a pro každý z těchto jazyků jsme natrénovali 3-stavový fonémový rozpoznávač. To nám dalo 16 možných kombinací jazyka pro vyhodnocení a jazyka na kterém byl natrénovaný rozpoznávač. Čtyři kombinace byly tedy závislé na jazyce (language-dependent) a 12 bylo jazykově nezávislých (language-independent). Všechny QbE systémy byly vyhodnoceny na stejných datech a stejných fonémových posteriorních příznacích, pomocí metrik: nesdružené Figure-of-Merit (non pooled FOM) a námi navrhnuté nesdružené Figure-of-Merit se simulací normalizace přes promluvy (utterrance-normalized non-pooled Figure-of-Merit). Ty nám poskytly relevantní údaje pro porovnání těchto QbE přístupů a pro získání lepšího vhledu do jejich chování. QbE přístupy použité v této práci jsou: sekvenční statistické modelování (GMM/HMM), srovnávání vzorů v příznacích (DTW) a srovnávání grafů hypotéz (WFST). Abychom porovnali výsledky QbE přístupů s běžnými STD systémy vyhledávajícími textové výrazy, vyhodnotili jsme jazykově závislé konfigurace také s akustickým detektorem klíčových slov (AKWS) a systémem pro vyhledávání fonémových řetězců v grafech hypotéz (WFSTlat). Jádrem této práce je vývoj, analýza a zlepšení systému WFST QbE STD, který po zlepšení dosahuje podobných výsledků jako DTW systém v jazykově závislých podmínkách.
|
Page generated in 0.0522 seconds