• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de la co-organisation nanoscopique des récepteurs glutamatergiques à l'état basal et dans un modèle d'autisme / Characterization of nanoscale co-organization of glutamatergic receptors at the basal state and in a model of autism

Goncalves, Julia 27 November 2018 (has links)
.Les récepteurs AMPA, NMDA et mGluR5 sont responsables de la majeure partie des courants excitateurs dans la transmission synaptique glutamatergique. Le contrôle de la dynamique et de l’organisation de ces récepteurs dans la synapse, via une combinaison de diffusion latérale et d’endo/exocytose, est essentiel à la régulation de l’intensité de la transmission synaptique. Les protéines de la densité post-synaptique, telles que Homer, Shank et GKAP, régulent la diffusion de ces derniers, contrôlent leur nombre et leur organisation à la post-synapse. Mon travail de thèse a consisté à étudier la co-organisation nanoscopique des récepteurs AMPA, NMDA et mGluR5 à la post-synapse. Dans un premier temps, grâce au développement de différents outils méthodologiques, j’ai caractérisé les propriétés individuelles d’organisation et de dynamique des récepteurs glutamatergiques, ainsi que leurs propriétés de co-organisation au sein de la post-synapse. Dans un second temps, j’ai cherché à explorer l’impact d’une modification structurelle de la densité post-synaptique sur leur nano-organisation. L’utilisation d’un modèle de troubles du spectre autistique, basé sur la variation d’expression de la protéine d’échafaudage Shank3, a permis d’étudier la désorganisation fonctionnelle des récepteurs au glutamate induite par une perturbation structurelle de la densité post-synaptique. Mes travaux démontrent une organisation clusterisée des récepteurs AMPA et NMDA à la post-synapse, et une distribution homogène des mGluR5 à leur périphérie. Les nanodomaines des AMPARs et des NMDARs ne sont pas co-localisés mais co-organisés, avec une tendance pour les NMDARs à occuper une place centrale dans la post-synapse. Les propriétés individuelles d’organisation des récepteurs AMPA ne sont pas affectées par une variation d’expression de la protéine Shank3, alors que les NMDARs et les mGluR5 voient leurs pools synaptiques affectés dans ce modèle de troubles du spectre autistique. Ces résultats apportent de nouveaux éléments de compréhension des bases moléculaires de la transmission synaptique glutamatergique en conditions physiologique et pathologique, et proposent une nouvelle vision de l’utilisation du glutamate par les synapses. / AMPA, NMDA and mGluR5 receptors are responsible of the majority of excitatory currents in glutamatergic synaptic transmission. Controlling the organization and the mobility of these receptors in the synapse, via a combination of lateral diffusion and endo/exocytosis, is essential for the regulation of synaptic transmission intensity. The proteins of the post-synaptic density, such as Homer, Shank and GKAP, regulate the diffusion of these receptors and control their number and organization at the post-synapse. My PhD work consisted of studying the nanoscale organization of AMPA, NMDA and mGluR5 receptors at the post-synapse. As a first step, thanks to the development of different methodological tools, I characterized the organization and dynamic properties of glutamatergic receptors, together with their co-organization within the post-synapse. As a second step, I explored the impact of structural modification of the post-synaptic density on the nano-organization of these receptors. The use of a model of autism spectrum disorder, based on a variation of the scaffold protein Shank3, enabled the study of functional disorganization of glutamate receptors induced by a structural disturbance of the post-synaptic density. This work shows a clustered organization of AMPA and NMDA receptors at the post-synapse, and a homogenous distribution of mGluR5 at their periphery. The AMPARs and NMDARs nanodomains are not co-localized but co-organized, with a tendency for the NMDARs to occupy a central place at the post-synapse. The individual organizational properties of AMPA receptors are not affected by the variation of Shank3 expression, whereas NMDARs and mGluR5 see their synaptic pool affected in this model of autism spectrum disorder. These results provide new evidence on the molecular bases of glutamatergic synaptic transmission in physiological and pathological conditions and propose a new vision of the use of glutamate by synapses.
2

Impact de l’inflammation centrale sur la mémoire / Impact of central inflammation on memory

Delpech, Jean-christophe 20 December 2012 (has links)
Le système de l’immunité innée cérébrale module le fonctionnement du cerveau et les processus comportementaux tout au long de la vie d'un individu. Parmi les différents protagonistes de ce système de l'immunité innée cérébrale, les cellules gliales jouent un rôle majeur notamment en régulant la synthèse de facteurs inflammatoires tels que les cytokines. Ces dernières, outre leur rôle dans la coordination de l'action des différents partenaires cellulaires de ce système, modifient l'activité neuronale. Lors d'un épisode inflammatoire, le système de l'immunité innée s'active et l'ensemble des signaux mis en place par les processus immunitaires est regroupé sous le terme de neuroinflammation. Plus particulièrement, les cytokines proinflammatoires et l’ATP libérés dans ce cadre ont été décrits comme étant capables de moduler la plasticité synaptique d'une part et les capacités d’apprentissages et de mémorisation d'autre part. Cependant, la compréhension de l’impact d’un épisode inflammatoire sur le système nerveux central et les capacités d’apprentissage n’est pas totale. Une cible potentielle de ces facteurs est le système de neurotransmission glutamatergique. En effet, les facteurs proinflammatoires peuvent augmenter ou diminuer l’expression ou l’activité de certaines sous-unités des récepteurs glutamatergiques. Mon objectif a été de déterminer dans quelle mesure la transmission glutamatergique est altérée en condition neuroinflammatoire et comment cela pouvait induire des altérations des capacités d’apprentissage chez le rongeur. Pour cela nous avons choisi comme tâche comportementale l’aversion gustative conditionnée, dont les mécanismes moléculaires nécessaire à sa mise en place sont connus et reposent sur la transmission glutamatergique dans une structure corticale particulière chez les rongeurs: le cortex insulaire. Notre étude visait à déterminer les mécanismes cellulaires et moléculaires par lesquels une inflammation localisée à ce cortex peut induire des modifications comportementales et biochimiques. Nous avons pu montrer que l’infusion de lipopolysaccharide, un puissant agent inflammatoire, dans le cortex insulaire induisait une augmentation de l'aversion conditionnée. Ceci était corrélé à une augmentation d’expression des récepteurs AMPA au glutamate dans cette structure, plus particulièrement dans le compartiment synaptique. Nous avons également pu montrer que l’infusion de LPS dans le cortex insulaire induisait la synthèse et la libération de cytokines proinflammatoires localement, sans stimuler le système de l’immunité périphérique. Même si ces cytokines sont connues comme étant des agents modulateurs de la neurotransmission glutamatergique, leur infusion dans le cortex insulaire n’a pas reproduit dans notre cas les effets de l’infusion du LPS. Par contre, nous avons montré que l’ATP était impliqué dans les effets du LPS sur l’apprentissage aversif, puisque le blocage des récepteurs purinergiques dans le cortex insulaire a permis de reverser les effets du LPS sur l’acquisition de l’aversion gustative. En conclusion, nos résultats suggèrent qu'une inflammation localisée dans le cortex insulaire conduit à la libération et à l'action d’ATP sur les cellules gliales et/ou neuronales, aboutissant à une hausse de l’acquisition de l’aversion gustative conditionnée. / The cerebral innate immune system is activated under pathophysiological conditions and can consequently modulate brain functioning and cognitive processes. This modulation is exerted by signals produced by immune-like processes grouped under the term of neuroinflammation and involving neuro-glial communication within the brain. In particular, proinflammatory cytokines and ATP, all produced during this immune system activation have been directly linked to modulation of synaptic plasticity and/or learning and memory functions in animals models. However, the cellular mechanisms by which neuroinflammation modulates neural plasticity and cognitive processes are still unclear. One candidate is the glutamatergic system. Indeed, pro-inflammatory factors can increase or decrease glutamatergic receptors expression and/or activity. Our study was dedicated at deciphering to what extent glutamatergic transmission is altered under neuroinflammation and how this may lead to learning and memory alteration. To this aim, we used the conditioned taste aversion, a task highly dependent on glutamatergic transmission into the insular cortex. Indeed, blockade of NMDA or AMPA receptors in this cortical area before acquisition greatly impairs conditioned taste aversion. The aim of our study was thus to investigate the behavioral and cellular impact of an inflammation restricted to the insular cortex on glutamatergic receptors expression and CTA memory formation. Here we show that a cortical inflammation, induced by LPS infusion into the insular cortex, prior to CTA acquisition enhances the aversion strength presumably through LPS-induced increase of glutamatergic AMPA, but not NMDA, receptor expression/trafficking at the insular synapses. Moreover, we show that ATP release, but not pro-inflammatory cytokines, is responsible for LPS-induced CTA enhancement. In conclusion we propose that inflammation restricted to the insular cortex enhances CTA acquisition through an ATP-dependent mechanism presumably involving an increase of glutamatergic AMPA receptor expression at the neuronal synapses.
3

Maladie d'Alzheimer : Impact extracellulaire et intracellulaire du peptide ß-amyloïde sur la transmission synaptique glutamatergique / Alzheimer's Disease : Impact of extracellular and intracellular beta-amyloid peptide on glutamatergic synaptic transmission

Rolland, Marta 25 October 2016 (has links)
La maladie d’Alzheimer (MA) constitue la forme la plus commune de démence associée à une perte de mémoire et caractérisée par l’accumulation de plaques extracellulaires contenant des peptides bêta-amyloïdes (Aβ). Des études ont révélé une perte plus importante de synapses que ne peut l’expliquer la mort neuronale, suggérant qu’un déficit synaptique serait présent dès les stades initiaux de la maladie. Bien que le peptide Aβ fût identifié comme un composé des plaques amyloïdes extracellulaires dans les années 1980, des études plus récentes ont mis en évidence la présence intracellulaire de ce peptide. L’accumulation d’Aβ intracellulaire serait un événement antérieur à la formation des plaques séniles dans la pathogenèse de la MA et corrèlerait mieux avec les perturbations de mémoire et d’apprentissage caractéristiques de cette maladie. De plus, des données mettent en évidence la responsabilité des formes oligomériques solubles d’Aβ (Aβo) dans les évènements précoces de la MA. Ce projet vise à mieux comprendre et caractériser l’impact extracellulaire et intracellulaire des peptides Aβo et le lien fonctionnel de leurs effets sur les mécanismes moléculaires impliqués dans les processus mnésiques affectés dans la maladie d’Alzheimer. Dans ce contexte, il nous a paru essentiel d’étudier l’impact extracellulaire et intracellulaire des oligomères d’Aβ sur la transmission synaptique. Ces travaux ont été effectués sur culture primaire de neurones corticaux et sur tranche de cortex de souris par des méthodes d’électrophysiologie via la technique de patch-clamp.Nous avons analysé la fréquence et l’amplitude des courants post-synaptiques excitateurs spontanés (sEPSC) des principaux récepteurs impliqués dans la transmission glutamatergique et dans les mécanismes moléculaires à la base de la mémoire et de l’apprentissage : les récepteurs AMPA et NMDA. Nos données montrent que les peptides Aβo dans le milieu extracellulaire (eAβo) ou dans le milieu intracellulaire (iAβo), affectent spécifiquement les courants associés à l’activation des récepteurs NMDA au niveau postsynaptique sans altérer les courants AMPA. L’application dans le milieu extracellulaire d’Aβo réduit l’amplitude des courants NMDA. Ce phénomène n’est pas lié à la pénétration du peptide Aβo dans les neurones mais à l’activation par l’Aβo de la voie amyloïdogénique induisant une accumulation intrasynaptique d’Aβo responsable de la réduction des courants NMDA.L’ensemble de ces données suggère que l’Aβo perturbe le processing d’APP menant à une production intracellulaire d’Aβo responsable de la réduction de la transmission glutamatergique NMDA-dépendante. Une étape essentielle afin d’améliorer la compréhension des mécanismes moléculaires qui sont à la base des altérations synaptiques glutamatergiques dans la MA est d’approfondir le lien fonctionnel entre les effets extracellulaire et intracellulaire des peptides Aβo. / Alzheimer’s disease (AD) is the most common form of dementia associated with memory loss and characterized by an accumulation of extracellular plaques composed of amyloid-beta peptides (Aβ). Studies have revealed a greater loss of synapses than the neuronal death can explain, suggesting that a synaptic deficit would be present from the early stages of the disease. Although the Aβ peptide has been identified as a component of the extracellular amyloid plaques in the 1980s, recent studies have highlighted the intracellular presence of this peptide. The intracellular accumulation of Aβ precedes the appearance of amyloid plaques in the pathogenesis of AD and seems to be correlated with the memory and learning troubles, characteristic of this disease. Moreover, some data highlight the responsibility of the soluble oligomeric Aβ form (Aβo) in the early events of AD. This project aims to better understand and characterize the extracellular and intracellular impact of Aβo peptides and the functional link of their effects on the molecular mechanisms involved in memory processes affected in AD. In this context, it was essential to study the extracellular and intracellular impact of Aβ oligomers on synaptic transmission. This work was carried out on cultures of primary cortical neurons and mouse cortex slices using electrophysiological methods via the patch-clamp technique.We have recorded the spontaneous excitatory postsynaptic currents (sEPSC) frequency and amplitude from the main receptors implicated in the glutamatergic transmission and in the molecular mechanisms underlying memory and learning processes: AMPA and NMDA receptors. Our data show that external or internal application of Aβo peptides affect specifically the currents associated with NMDA receptors at a postsynaptic level without altering the AMPA currents. The external application of Aβo reduces the NMDA current amplitude. This phenomenon is not due to the penetration of the Aβo peptide into the neurons but rather to the activation of the amyloïdogenic pathway by Aβo inducing an intracellular accumulation of Aβo responsible of the NMDA current reduction.All these data suggest that Aβo perturb the processing of APP leading to an intracellular Aβo production responsible of the glutamatergic NMDA-dependent transmission reduction. An essential step in order to improve our understanding of the molecular mechanisms underlying the altered glutamatergic synaptic alterations found in AD is to deepen the functional link between the extracellular and intracellular effects of the Aβo peptides.
4

Identification des mécanismes périphériques impliqués dans la douleur chronique expérimentale des muscles de la mastication

Ferreira, Renato Alves 12 1900 (has links)
L’objectif premier de notre projet était d’établir un modèle animal de douleur chronique orofaciale, lequel pourrait imiter la sensibilité retrouvée chez les patients souffrant de douleur orofaciale myalgique. Nous avons procédé à des injections intramusculaires de saline acide (2 injections à 2 jours d’intervalle pH 4.0) pour induire une sensibilisation mécanique des mucles massétérins. La réponse nocifensive a été mesurée à l’aide de filaments de von Frey avant et après ces injections dans des rats Sprague-Dawley. Par la suite, le potentiel analgésique de différents antagonistes des récepteurs glutamatergiques fût évalué par l’injection intramusculaire de ces antagonistes à différents moments. Nos résultats suggèrent que deux injections de saline acide, produisent une hypersensibilité mécanique signalée par l’augmentation du nombre de réponses à l’application de filaments de von Frey. Cet effet dure plusieurs semaines et est bilatéral, même lorsque les injections sont unilatérales, indiquant qu’une composante centrale est forcément impliquée. Toutefois, une composante périphérique impliquant les récepteurs glutamatergiques semble présider le tout puisque les antagonistes glutamatergiques, appliqués de façon préventive empêchent le développement de l’hypersensibilité. Cependant, le maintien de cette hypersensibilité doit dépendre de mécanismes centraux puisque l’application d’antagonistes une fois la sensibilisation induite, ne diminue en rien le nombre de réponses obtenues. Ce modèle semble approprié pour reproduire une hypersensibilité musculaire durable de bas niveau. Nos données indiquent que les récepteurs glutamatergiques périphériques participent à l’induction de cette hypersensibilité de longue durée. Nous croyons que ce modèle pourra éventuellement contribuer à une meilleure compréhension des mécanismes à l’origine des myalgies faciales persistantes. / The first objective of this project was to establish an animal model of chronic orofacial pain, which could mimic symptoms of patients suffering from orofacial myalgia. We used acidic saline injections (2 injections, 2 days apart at pH 4.0) in masseteric muscles to induce mechanical hypersensitivity. Nocifensive behavior was measured before and after the injections using von Frey filaments in male Sprague Dawley rats. Later, the potential analgesic effect of glutamate receptors antagonists was measured by intramuscular administration of these antagonists at different times. Our results suggest that two injections of acidic saline produce a mechanical hypersensitivity as reflected by the increased number of responses to applications of von Frey filaments. This effect lasts several weeks and is bilateral, even when the injections are unilateral, indicating that a central component must be involved. However, the initial stage of induction of this hypersensitivity involves peripheral glutamate receptors since injection of their antagonists before the second acidic saline injection prevents development of the nocifensive response, whereas their injection at later times is ineffective in blocking development of the response. This model based on a double injection of acidic saline seems appropriate to reproduce low intensity, long-lasting muscle pain. Our data suggests that peripheral glutamate receptors are involved in the induction of this long-term hypersensitivity. We believe that this model may contribute to a better understanding of the mechanisms behind persistent orofacial muscle pain.
5

Identification des mécanismes périphériques impliqués dans la douleur chronique expérimentale des muscles de la mastication

Ferreira, Renato Alves 12 1900 (has links)
L’objectif premier de notre projet était d’établir un modèle animal de douleur chronique orofaciale, lequel pourrait imiter la sensibilité retrouvée chez les patients souffrant de douleur orofaciale myalgique. Nous avons procédé à des injections intramusculaires de saline acide (2 injections à 2 jours d’intervalle pH 4.0) pour induire une sensibilisation mécanique des mucles massétérins. La réponse nocifensive a été mesurée à l’aide de filaments de von Frey avant et après ces injections dans des rats Sprague-Dawley. Par la suite, le potentiel analgésique de différents antagonistes des récepteurs glutamatergiques fût évalué par l’injection intramusculaire de ces antagonistes à différents moments. Nos résultats suggèrent que deux injections de saline acide, produisent une hypersensibilité mécanique signalée par l’augmentation du nombre de réponses à l’application de filaments de von Frey. Cet effet dure plusieurs semaines et est bilatéral, même lorsque les injections sont unilatérales, indiquant qu’une composante centrale est forcément impliquée. Toutefois, une composante périphérique impliquant les récepteurs glutamatergiques semble présider le tout puisque les antagonistes glutamatergiques, appliqués de façon préventive empêchent le développement de l’hypersensibilité. Cependant, le maintien de cette hypersensibilité doit dépendre de mécanismes centraux puisque l’application d’antagonistes une fois la sensibilisation induite, ne diminue en rien le nombre de réponses obtenues. Ce modèle semble approprié pour reproduire une hypersensibilité musculaire durable de bas niveau. Nos données indiquent que les récepteurs glutamatergiques périphériques participent à l’induction de cette hypersensibilité de longue durée. Nous croyons que ce modèle pourra éventuellement contribuer à une meilleure compréhension des mécanismes à l’origine des myalgies faciales persistantes. / The first objective of this project was to establish an animal model of chronic orofacial pain, which could mimic symptoms of patients suffering from orofacial myalgia. We used acidic saline injections (2 injections, 2 days apart at pH 4.0) in masseteric muscles to induce mechanical hypersensitivity. Nocifensive behavior was measured before and after the injections using von Frey filaments in male Sprague Dawley rats. Later, the potential analgesic effect of glutamate receptors antagonists was measured by intramuscular administration of these antagonists at different times. Our results suggest that two injections of acidic saline produce a mechanical hypersensitivity as reflected by the increased number of responses to applications of von Frey filaments. This effect lasts several weeks and is bilateral, even when the injections are unilateral, indicating that a central component must be involved. However, the initial stage of induction of this hypersensitivity involves peripheral glutamate receptors since injection of their antagonists before the second acidic saline injection prevents development of the nocifensive response, whereas their injection at later times is ineffective in blocking development of the response. This model based on a double injection of acidic saline seems appropriate to reproduce low intensity, long-lasting muscle pain. Our data suggests that peripheral glutamate receptors are involved in the induction of this long-term hypersensitivity. We believe that this model may contribute to a better understanding of the mechanisms behind persistent orofacial muscle pain.
6

L’interactome de Scrib1 et son importance pour la plasticitè synaptique & les troubles de neurodéveloppement / The Scrib1 Interactome and its relevance for synaptic plasticity & neurodevelopmental disorders

Margarido Pinheiro, Vera 04 December 2014 (has links)
Le cerveau contient environ cent milliards de cellules nerveuses, ou neurones. Ces neurones communiquent entre eux par des structures fonctionnellement distinctes – l’axone et la dendrite – capables d’émettre et recevoir des signaux électriques ou chimiques à partir d’un compartiment présynaptique vers un compartiment, dit post-synaptique. Nous avons focalisé notre étude sur les synapses des neurones hippocampiques, qu’on estime responsables de fonctions cérébrales dites supérieures, comme la mémoire et l’apprentissage. Plus particulièrement, on s’est intéressé au développement et au maintien des épines dendritiques, dont les changements morphologiques sont intimement liés à la plasticité synaptique, autrement dit, capacité de réponse à l’activité synaptique. Les épines dendritiques ont pour origine les filopodes qui évoluent en épines lors du contact axonal. La transition entre filopode et épine implique une myriade de molécules, dont des récepteurs glutamatergiques, des protéines d’échafaudage et du cytosquelette d’actine capables de recevoir, transmettre et intégrer le signal présynaptique. Cependant, la coordination spatiale et temporelle de tous ces composants moléculaires au long de la formation et maturation d’une synapse reste largement méconnue.Scribble1 (Scrib1) est une protéine de polarité cellulaire (PCP) classiquement impliquée dans l’homéostasie de tissues épithéliaux ainsi que dans la croissance et progression des tumeurs. Scrib1 est aussi une protéine d’échafaudage critique pour le développement et le bon fonctionnement du cerveau. L’objectif de cette étude a donc été d’étudier les mécanismes moléculaires sous-jacents à un rôle potentiel de Scrib1 dans la formation et le maintien des synapses. Dans un premier temps, on a décrit l’importance d’interactions dépendantes des domaines PDZ sur le trafic des récepteurs glutamatergiques ainsi que sur la voie de signalisation de plasticité synaptique sous-jacente à la mémoire spatiale. Dans un second temps, nous avons évalué les conséquences fonctionnelles d’une mutation de Scrib1 récemment identifiée chez un patient humain atteint des troubles du spectre autistique (TSA) dans la morphologie et fonction des neurones. On a démontré que Scrib1 régule l’arborisation dendritique ainsi que la formation et le maintien fonctionnel des épines dendritiques via un mécanisme dépendent du cytosquelette d’actine. Le dérèglement de ces mécanismes pourrait être à l’origine du phénotype TSA. L’ensemble de ce travail met en évidence que Scrib1, protéine d’échafaudage clé dans le développement et la fonction du cerveau, joue une multitude de rôle du niveau subcellulaire au niveau cognitif. / The brain is made up of billions of nerve cells, or neurons. Neurons communicate with each other through functionally distinct structures - the axon and the dendrite - which are able to release and receive an electrical or chemical signal from a pre- to a post-synaptic compartment, respectively. We focused our study on hippocampal neurons synapses, which ultimately underlie high-order brain functions, such as learning and memory. In particular, we studied the development and maintenance of dendritic spines, whose changes in morphology are intimately correlated with synaptic plasticity, or the ability to respond to synaptic activity. Dendritic spines originate from motile dendritic filopodia, which mature into spines following axonal contact. The filopodia-to-spine transition involves a plethora of molecular actors, including glutamate receptors, scaffold proteins and the actin cytoskeleton, able to receive, transmit and integrate the pre-synaptic signal. The spatial and temporal coordination of all these molecular components throughout the formation and maturation of a synapse remains, however, unclear. Scribble1 (Scrib1) is planar cell polarity protein (PCP) classically implicated in the homeostasis of epithelial tissues and tumour growth. In the mammalian brain, Scrib1 is a critical scaffold protein in brain development and function. The main goal of this work was, therefore, to investigate the molecular mechanisms underlying Scrib1 role in synapse formation and maintenance. In a first part, we depict the importance of Scrib1 PDZ-dependent interactions on glutamate receptors trafficking as well as bidirectional plasticity signalling pathway underying spatial memory. In a second part, we focus on the functional consequences of a recently identified autism spectrum disorder (ASD) mutation of Scrib1 on neuronal morpholgy and function. We demonstrated that Scrib1 regulates dendritic arborization as well as spine formation and functional maintenance via an actin-dependent mechanism, whose disruption might underlie the ASD phenotype. Taken altogether, this thesis highlights the PCP protein Scrib1 as key scaffold protein in brain development and function, playing a plethora of roles from the subcelular to the cognitive level.

Page generated in 0.1061 seconds