Spelling suggestions: "subject:"réseaux dde neurones"" "subject:"réseaux dee neurones""
371 |
Sequential modeling, generative recurrent neural networks, and their applications to audioMehri, Soroush 12 1900 (has links)
No description available.
|
372 |
Speech synthesis using recurrent neural networksRodríguez Sotelo, José Manuel 12 1900 (has links)
No description available.
|
373 |
Contribution to the analysis and understanting of electrical-grid signals with signal processing and machine learning techniques / Contribution à l'analyse et à la compréhension des signaux des réseaux électriques par des techniques issues du traitement du signal et de l'apprentissage machineNguyen, Thien-Minh 20 September 2017 (has links)
Ce travail de thèse propose des approches d’identification et de reconnaissance des harmoniques de courant qui sont basées sur des stratégies d’apprentissage automatique. Les approches proposées s’appliquent directement dans les dispositifs d’amélioration de la qualité de l’énergie électrique.Des structures neuronales complètes, dotées de capacités d’apprentissage automatique, ont été développées pour identifier les composantes harmoniques d’un signal sinusoïdal au sens large et plus spécifiquement d’un courant alternatif perturbé par des charges non linéaires. L’identification des harmoniques a été réalisée avec des réseaux de neurones de type Multi–Layer Perceptron (MLP). Plusieurs schémas d’identification ont été développés, ils sont basés sur un réseau MLP composé de neurones linéaire ou sur plusieurs réseaux MLP avec des apprentissages spécifiques. Les harmoniques d’un signal perturbé sont identifiées avec leur amplitude et leur phase, elles peuvent servir à générer des courants de compensation pour améliorer la forme du courant électrique. D’autres approches neuronales a été développées pour reconnaître les charges. Elles consistent en des réseaux MLP ou SVM (Support Vector Machine) et fonctionnent en tant que classificateurs. Leur apprentissage permet à partir des harmoniques de courant de reconnaître le type de charge non linéaire qui génère des perturbations dans le réseau électrique. Toutes les approches d’identification et de reconnaissance des harmoniques ont été validées par des tests de simulation à l’aide des données expérimentales. Des comparaisons avec d’autres méthodes ont démontré des performances supérieures et une meilleure robustesse. / This thesis proposes identifying approaches and recognition of current harmonics that are based on machine learning strategies. The approaches are applied directly in the quality improvement devices of electric energy and in energy management solutions. Complete neural structures, equipped with automatic learning capabilities have been developed to identify the harmonic components of a sinusoidal signal at large and more specifically an AC disturbed by non–linear loads. The harmonic identification is performed with multilayer perceptron neural networks (MLP). Several identification schemes have been developed. They are based on a MLP neural network composed of linear or multiple MLP networks with specific learning. Harmonics of a disturbed signal are identified with their amplitude and phases. They can be used to generate compensation currents fed back into the network to improve the waveform of the electric current. Neural approaches were developed to distinguish and to recognize the types of harmonics and is nonlinear load types that are at the origin. They consist of MLP or SVM (Support Vector Machine) acting as classifier that learns the harmonic profile of several types of predetermined signals and representative of non–linear loads. They entry are the parameters of current harmonics of the current wave. Learning can recognize the type of nonlinear load that generates disturbances in the power network. All harmonics identification and recognition approaches have been validated by simulation tests or using experimental data. The comparisons with other methods have demonstrated superior characteristics in terms of performance and robustness.
|
374 |
Caractérisation, Evaluation, mMdélisation des échanges entre aquifères karstiques et rivières : application à la Cèze (Gard, France) / CHARACTERIZATION, ASSESSMENT, MODELING OF EXCHANGES BETWEEN KARSTIC AQUIFERS AND RIVERS – APPLICATION TO THE RIVER CÈZE (GARD, FRANCE)Chapuis, Hervé 12 October 2017 (has links)
Ce travail s’inscrit dans un projet de recherche interdisciplinaire (Zone Atelier Bassin du Rhône – Agence de l’Eau Rhône Méditerranée Corse) portant sur la rivière Cèze, affluent du Rhône.Le terrain d’expérimentation se situe dans les formations karstiques du bassin de la Cèze (Gard, France). Cette zone touristique est exposée à une croissance démographique et de l’activité agricole, engendrant une augmentation de la demande en eau. La thèse se concentre sur la restitution des eaux karstiques à la rivière en période estivale pour en comprendre le fonctionnement de l’hydrosystème en période de basses eaux, quand la ressource est vulnérable.Ce travail a permis d’élaborer une méthodologie, pour analyser et quantifier les échanges entre la rivière et l’aquifère karstique, fondée sur : la géologie, l’hydrologie, la géochimie, la biologie, la radioactivité en radon, l’analyse d’images infrarouges thermiques et la modélisation. Les résultats obtenus avec ces approches sont confrontés pour interpréter les interactions karst/rivière d’un point de vue qualitatif et/ou quantitatif (localisation, périodicité, débits). La confrontation de ces résultats met en avant l’intérêt d’une méthodologie interdisciplinaire pour interpréter et quantifier les échanges karst/rivière. L’application de la méthode montre qu’en juin 2015, la Cèze est alimentée à 50 % par des eaux karstiques.L’analyse multi-métrique du système karstique a permis d’acquérir de nouvelles connaissances sur son fonctionnement nécessaires pour paramétrer le modèle par réseaux de neurones qui constitue la dernière étape de ce travail. / This work is part of an interdisciplinary research project (Rhone Basin Workshop Zone – the Rhone-Mediterranean and Corsica Water Agency) on the river Cèze, a tributary of the Rhône.The experimental field is located in the karstic formations of the Cèze basin (Gard, France). This tourist area is exposed to population growth and agricultural activity, causing an increase in water demand. The thesis focuses on the karstic water restitution to the river during summer, in order to understand the functioning of the hydrosystem in periods of low water levels, when the resource is vulnerable.This work led to the development of a methodology to analyze and quantify the exchanges between karstic aquifers and rivers. This methodology is based on geology, hydrology, geochemistry, biology, radon radioactivity, infrared thermal imaging analysis and modeling. The results obtained with these approaches are compared in order to understand the karst/river interactions from a qualitative and/or quantitative point of view (localization, frequency, flow rates). The comparison of these results highlights the advantages of an interdisciplinary methodology for understanding and quantifying the karst/river exchanges. The application of this method shows that in June 2015, 50 % of the river Cèze was fed by karstic waters.The multi-metric analysis of the karstic system has led to new knowledge about its functioning. This knowledge is necessary to set the model’s parameters using neural networks, which is the last stage of this work.
|
375 |
Searching for supersymmetry using deep learning with the ATLAS detectorGagnon, Louis-Guillaume 07 1900 (has links)
Le Modèle Standard de la physique des particules (MS) est une théorie
fondamentale de la nature dont la validité a été largement établie par
diverses expériences. Par contre, quelques problèmes théoriques et
expérimentaux subsistent, ce qui motive la recherche de théories
alternatives. La Supersymétrie (SUSY), famille de théories dans
laquelle une nouvelle particule est associée à chaque particules du
MS, est une des théories ayant les meilleures motivations pour étendre
la portée du modèle. Par exemple, plusieurs théories supersymétriques
prédisent de nouvelles particules stables et interagissant seulement
par la force faible, ce qui pourrait expliquer les observations
astronomiques de la matière sombre. La découverte de SUSY
représenterait aussi une importante étape dans le chemin vers une
théorie unifiée de l'univers. Les recherches de supersymétrie sont au
coeur du programme expérimental de la collaboration ATLAS, qui
exploite un détecteur de particules installé au Grand Collisioneur de
Hadrons (LHC) au CERN à Genève, mais à ce jours aucune preuve en
faveur de la supersymétrie n'a été enregistrée par les présentes
analyses, largement basées sur des techniques simples et bien
comprises.
Cette thèse documente l'implémentation d'une nouvelle approche à la
recherche de particules basée sur l'apprentissage profond, utilisant
seulement les quadri-impulsions comme variables discriminatoires;
cette analyse utilise l'ensemble complet de données d'ATLAS enregistré
en 2015-2018. Les problèmes de la naturalité du MS et de la matière
sombre orientent la recherche vers les partenaires supersymétriques du
gluon (le gluino), des quarks de troisième génération (stop et
sbottom), ainsi que des bosons de gauge (le neutralino). Plusieurs
techniques récentes sont employées, telles que l'utilisation directe
des quadri-impulsions reconstruites à partir des données enregistrées
par le détecteur ATLAS ainsi que la paramétrisation d'un réseau de
neurone avec les masses des particules recherchées, ce qui permet
d'atteindre une performance optimale quelle que soit l'hypothèse de
masses. Cette méthode améliore la signification statistique par un
facteur 85 par rapport au dernier résultat d'ATLAS pour certaines
hypothèses de masses, et ce avec la même luminosité.
Aucun excès signifif au-delà du Modèle Standard n'est observé. Les
masses du gluino en deçà de 2.45 TeV et du neutralino en deça de
1.7 TeV sont exclues à un niveau de confiance de 95%, ce qui étend
largement les limites précédentes sur deux modèles de productions de
paires de gluinos faisant intervenir des stops et des sbottoms,
respectivement. / The Standard Model of particle physics (SM) is a fundamental theory of
nature whose validity has been extensively confirmed by
experiments. However, some theoretical and experimental problems
subsist, which motivates searches for alternative theories to
supersede it. Supersymmetry (SUSY), which associate new fundamental
particles to each SM particle, is one of the best-motivated such
theory and could solve some of the biggest outstanding problems with
the SM. For example, many SUSY scenarios predict stable neutral
particles that could explain observations of dark matter in the
universe. The discovery of SUSY would also represent a huge step towards a
unified theory of the universe. Searches for SUSY are at the heart of
the experimental program of the ATLAS collaboration, which exploits a
state-of-the-art particle detector installed at the Large Hadron
Collider (LHC) at CERN in Geneva. The probability to observe many
supersymmetric particles went up when the LHC ramped up
its collision energy to 13~TeV, the highest ever achieved in
laboratory, but so far no evidence for SUSY has been recorded by
current searches, which are mostly based on well-known simple
techniques such as counting experiments.
This thesis documents the implementation of a novel deep
learning-based approach using only the four-momenta of selected
physics objects, and its application to the search for supersymmetric
particles using the full ATLAS 2015-2018
dataset. Motivated by naturalness considerations as well as by the
problem of dark matter, the search focuses on finding evidence for
supersymmetric partners of the gluon (the gluino), third generation
quarks (the stop and the sbottom), and gauge bosons (the neutralino).
Many recently introduced physics-specific machine learning
developments are employed, such as directly using detector-recorded
energies and momenta of produced particles instead of first deriving a
restricted set of physically motivated variables and parametrizing the
classification model with the masses of the particles searched for,
which allows optimal sensitivity for all mass hypothesis. This method
improves the statistical significance of the search by up to 85 times
that of the previous ATLAS analysis for some mass hypotheses, after
accounting for the luminosity difference.
No significant excesses above the SM background are recorded. Gluino
masses below 2.45 TeV and neutralino masses below 1.7 TeV are excluded
at the 95% confidence level, greatly increasing the previous limit on
two simplified models of gluino pair production with off-shell stops
and sbottoms, respectively.
|
376 |
Étude comparative et choix optimal du nombre de classes en classification et réseaux de neurones : application en science des donnéesSanka, Norbert Bertrand January 2021 (has links) (PDF)
No description available.
|
377 |
Développement d'outils web de détection d'annotations manuscrites dans les imprimés anciensM'Begnan Nagnan, Arthur January 2021 (has links) (PDF)
No description available.
|
378 |
Cohorte de réseaux de neurones récurrents pour la reconnaissance de l'écriture / Cohort of recurrent neural networks for handwriting recognitionStuner, Bruno 11 June 2018 (has links)
Les méthodes à l’état de l’art de la reconnaissance de l’écriture sont fondées sur des réseaux de neurones récurrents (RNN) à cellules LSTM ayant des performances remarquables. Dans cette thèse, nous proposons deux nouveaux principes la vérification lexicale et la génération de cohorte afin d’attaquer les problèmes de la reconnaissance de l’écriture : i) le problème des grands lexiques et des décodages dirigés par le lexique ii) la problématique de combinaison de modèles optiques pour une meilleure reconnaissance iii) la nécessité de constituer de très grands ensembles de données étiquetées dans un contexte d’apprentissage profond. La vérification lexicale est une alternative aux décodages dirigés par le lexique peu étudiée à cause des faibles performances des modèles optiques historiques (HMM). Nous montrons dans cette thèse qu’elle constitue une alternative intéressante aux approches dirigées par le lexique lorsqu’elles s’appuient sur des modèles optiques très performants comme les RNN LSTM. La génération de cohorte permet de générer facilement et rapidement un grand nombre de réseaux récurrents complémentaires en un seul apprentissage. De ces deux techniques nous construisons et proposons un nouveau schéma de cascade pour la reconnaissance de mots isolés, une nouvelle combinaison au niveau ligne LV-ROVER et une nouvelle stratégie d’auto-apprentissage de RNN LSTM pour la reconnaissance de mots isolés. La cascade proposée permet de combiner avec la vérification lexicale des milliers de réseaux et atteint des résultats à l’état de l’art pour les bases Rimes et IAM. LV-ROVER a une complexité réduite par rapport à l’algorithme original ROVER et permet de combiner des centaines de réseaux sans modèle de langage tout en dépassant l’état de l’art pour la reconnaissance de lignes sur le jeu de donnéesRimes. Notre stratégie d’auto-apprentissage permet d’apprendre à partir d’un seul réseau BLSTM et sans paramètres grâce à la cohorte et la vérification lexicale, elle montre d’excellents résultats sur les bases Rimes et IAM. / State-of-the-art methods for handwriting recognition are based on LSTM recurrent neural networks (RNN) which achieve high performance recognition. In this thesis, we propose the lexicon verification and the cohort generation as two new building blocs to tackle the problem of handwriting recognition which are : i) the large vocabulary problem and the use of lexicon driven methods ii) the combination of multiple optical models iii) the need for large labeled dataset for training RNN. The lexicon verification is an alternative to the lexicon driven decoding process and can deal with lexicons of 3 millions words. The cohort generation is a method to get easily and quickly a large number of complementary recurrent neural networks extracted from a single training. From these two new techniques we build and propose a new cascade scheme for isolated word recognition, a new line level combination LV-ROVER and a new self-training strategy to train LSTM RNN for isolated handwritten words recognition. The proposed cascade combines thousands of LSTM RNN with lexicon verification and achieves state-of-the art word recognition performance on the Rimes and IAM datasets. The Lexicon Verified ROVER : LV-ROVER, has a reduce complexity compare to the original ROVER algorithm and combine hundreds of recognizers without language models while achieving state of the art for handwritten line text on the RIMES dataset. Our self-training strategy use both labeled and unlabeled data with the unlabeled data being self-labeled by its own lexicon verified predictions. The strategy enables self-training with a single BLSTM and show excellent results on the Rimes and Iam datasets.
|
379 |
Toward organic ambient intelligences ? : EMMA / Vers des intelligences ambiantes organiques ? : EMMADuhart, Clément 21 June 2016 (has links)
L’Intelligence Ambiamte (AmI) est un domaine de recherche investigant les techniques d’intelligence artificielle pour créer des environnements réactifs. Les réseaux de capteurs et effecteurs sans-fils sont les supports de communication entre les appareils ménagers, les services installés et les interfaces homme-machine. Cette thèse s’intéresse à la conception d’Environements Réactifs avec des propriétés autonomiques i.e. des systèmes qui ont la capacité de se gérer eux-même. De tels environements sont ouverts, à grande échelle, dynamique et hétérogène, ce qui induit certains problèmes pour leur gestion par des systèmes monolithiques. L’approche proposée est bio-inspirée en considérant chacune des plate-formes comme une cellule indépendente formant un organisme intelligent distribué. Chaque cellule est programmée par un processus ADN-RNA décrit par des règles réactives décrivant leur comportement interne et externe. Ces règles sont modelées par des agents mobiles ayant des capacités d’auto-réécriture et offrant ainsi des possibilités de reprogrammation dynamique. Le framework EMMA est composé d’un middleware modulaire avec une architecture orientée ressource basée sur la technologie 6LoWPAN et d’une architecture MAPE-K pour concevoir des AmI à plusieurs échelles. Les différentes relations entre les problèmes techniques et les besoins théoriques sont discutées dans cette thèse depuis les plate-formes, le réseau, le middleware, les agents mobiles, le déploiement des applications jusqu’au système intelligent. Deux algorithmes pour AmI sont proposés : un modèle de contrôleur neuronal artificiel pour le contrôle automatique des appareils ménagers avec des processus d’apprentissage ainsi qu’une procédure de vote distribuée pour synchroniser les décisions de plusieurs composants systèmes. / AThe Ambient Intelligence (AmI) is a research area investigating AI techniques to create Responsive Environments (RE). Wireless Sensor and Actor Network (WSAN) are the supports for communications between the appliances, the deployed services and Human Computer Interface (HCI). This thesis focuses on the design of RE with autonomic properties i.e. system that have the ability to manage themselves. Such environments are open, large scale, dynamic and heterogeneous which induce some difficulties in their management by monolithic system. The bio-inspired proposal considers all devices like independent cells forming an intelligent distributed organism. Each cell is programmed by a DNA-RNA process composed of reactive rules describing its internal and external behaviour. These rules are modelled by reactive agents with self-rewriting features offering dynamic reprogramming abilities. The EMMA framework is composed of a modular Resource Oriented Architecture (ROA) Middleware based on IPv6 LoW Power Wireless Area Networks (6LoWPAN) technology and a MAPE-K architecture to design multi-scale AmI. The different relations between technical issues and theoretical requirements are discussed through the platforms, the network, the middleware, the mobile agents, the application deployment to the intelligent system. Two algorithms for AmI are proposed: an Artificial Neural Controller (ANC) model for automatic control of appliances with learning processes and a distributed Voting Procedures (VP) to synchronize the decisions of several system components over the WSAN.
|
380 |
Recurrent neural models and related problems in natural language processingZhang, Saizheng 04 1900 (has links)
No description available.
|
Page generated in 0.1059 seconds