• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 134
  • 32
  • Tagged with
  • 438
  • 438
  • 245
  • 210
  • 178
  • 153
  • 138
  • 108
  • 103
  • 94
  • 86
  • 84
  • 82
  • 79
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Laser-induced plasma on polymeric materials and applications for the discrimination and identification of plastics / Plasma induit par laser sur des matériaux organiques et applications pour discrimination et identification de plastiques

Boueri, Myriam 18 October 2010 (has links)
La spectrométrie de plasma induit par laser, plus connue sous le nom de LIBS (l’acronyme du terme en anglais Laser-Induced Breakdown Spectroscopy) est une technique analytique qui permet la détection de l’ensemble des éléments du tableau périodique avec des limites de détection de l’ordre du ppm et ceci sur tous types d’échantillons qu’ils soient liquides, solides ou gazeux. Sa simplicité de mise en œuvre, sa rapidité et sa versatilité en font une technique très attractive avec un fort potentiel en termes d’applications que ce soit pour le contrôle en ligne, l’environnement ou l’exploration spatiale. Son point faible reste cependant son manque de fiabilité dans l’analyse quantitative, en particulier lors de l’étude d’échantillons hétérogènes ou de matrices complexes telles que les matrices organiques. Ce travail de thèse propose une étude des propriétés des plasmas induit par laser sur différentes familles de polymères. Une étude du plasma au temps court (~ns) par ombroscopie est tout d’abord présentée, ceci pour différents paramètres expérimentaux (énergie laser, durée d’impulsion, longueur d’onde). Un diagnostic complet du plasma par spectrométrie d’émission est ensuite détaillé pour différents délais de détection et montre que la mesure des températures des différentes espèces du plasma (atomique, ionique et moléculaire) permet de vérifier, dans certaines conditions, les hypothèses d’homogénéité et de l’équilibre thermodynamique local. Ceci permet alors la mise en place de procédures quantitatives telles que la méthode dite sans calibration (calibration free LIBS) tout en optimisant le rapport signal sur bruit de la mesure LIBS. Dans nos expériences cette optimisation est mise à profit pour l’identification de différentes familles de polymères en utilisant, pour le traitement des données de la spectroscopie LIBS, la méthode chimiométrique des réseaux de neurones artificiels. Les résultats obtenus, très prometteurs, permettent d’envisager l’utilisation de la LIBS pour l’identification en temps réel des matières plastiques sur chaine de tri. Par ailleurs et de manière plus générale, ce travail pourrait constituer une base solide pour aller étudier d’autres matériaux organiques plus complexes tels que des tissus biologiques. / Laser-Induced Breakdown Spectroscopy (LIBS) is an analytical technique that has the potential to detect all the elements present in the periodic table. The limit of detection can go below a few ppm and this regardless of the physical phase of the analyzed sample (solid, liquid or gas). Its simplicity of use, its rapidity to get results and its versatility provide this technique with attractive features. The technique is currently developed for applications in a large number of domains such as online control, spatial explorations and the environment. However the weakness of the LIBS technique, compared to other more conventional ones, is still its difficulty in providing reliable quantitative results, especially for inhomogeneous and complex matrix such as organic or biological materials. The work presented in this thesis includes a study of the properties of plasma induced from different organic materials. First, a study of the plasma induced on the surface of a Nylon sample at short time delays (~ns) was carried out using the time-resolved shadowgraph technique for different experimental parameters (laser energy, pulse duration, wavelength). Then, a complete diagnostics of the plasma was performed using the plasma emission spectroscopy. A detailed analysis of the emission spectra at different detection delays allowed us to determine the evolution of the temperatures of the different species in the plasma (atoms, ions and molecules). The homogeneity and the local thermodynamic equilibrium within the plasma was then experimentally checked and validated. We demonstrated that the optimisation of the signalto- noise ratio and a quantitative procedure, such as the calibration-free LIBS, can be put in place within a properly chosen detection window. In our experiments, such optimised detection configuration was further employed to record LIBS spectra from different families of polymer in order to identify and classify them. For this purpose, the chemometrics procedure of artificial neural networks (ANN) was used to process the recorded LIBS spectroscopic data. The promising results obtained in this thesis makes LIBS stand out as a potentially useful tool for real time identification of plastic materials. Finally, this work can also be considered as a base for the further studies of more complex materials such as biological tissues with LIBS.
362

Développement d’une méthode d’auto-paramétrage auto-adaptatif pour une pompe à chaleur en vue d’un fonctionnement optimisé / Development of a self-parameterization method for heat pumps

Tejeda de la cruz, Alberto 28 September 2016 (has links)
Lors de l’installation d’une pompe à chaleur (PAC) double service (chauffage et eau chaude sanitaire (ECS)) dans le secteur résidentiel, la phase de mise en service est délicate : les paramètres à renseigner sont nombreux et non triviaux. Or, le bon fonctionnement de la PAC est très sensible à la qualité de cette étape. Quelques mauvais réglages peuvent entraîner un fonctionnement non optimal, voire un dysfonctionnement important (confort mal assuré). L’objectif de la thèse est de mettre au point une méthode de paramétrage auto-adaptatif modifiant les valeurs de « sortie d’usine » des paramètres pour les adapter au réseau d'émetteurs, à la réponse thermique du bâtiment et aux habitudes chauffage et de consommation d'ECS des occupants. Les paramètres doivent être adaptés à partir des capteurs déjà en place sur la PAC.Le travail de thèse porte d'abord sur l’identification des paramètres clés de la PAC, ceux qui influencent le plus la consommation. On en déduit quelques fonctions à optimiser : ajustement de la loi d'eau, méthode de choix des meilleures séquences de production d'ECS, anticipation de la relance du chauffage. L'objectif est de maximiser le coefficient de performance et de minimiser le recours aux appoints électriques tout en garantissant le confort. Ces objectifs sont atteints en développant des algorithmes de contrôle optimisé. Des modèles neuronaux de prévision de la réponse thermique du bâtiment, du stock d’ECS et des performances de la PAC ont été développés pour ce contrôle optimisé. Les modèles et algorithmes développés ont été validés numériquement et les performances de la PAC comparées à celles avec contrôle classique sans auto-paramétrage. Les solutions proposées ont été appliquées et testées durant une saison sur une PAC réelle sur un banc d'essai semi-virtuel (climat réel et bâtiment virtuel). / Setting control parameters of residential double service heat pumps at the time of installation and commissioning is a delicate matter. Indeed, some parameters are not trivial, there are many to be adjusted and the heat pump operations are quite sensitive to the parameters' values. Poor parameterization can lead to suboptimal heat pump operation or even to important dysfunction (harming thermal comfort).Hence, this thesis aims to develop a method for the heat pump to self-adapt the value of its control parameters. The heat pump should modify if required the "default" settings in order to adapt them to the heat emitters, to the building thermal response and to the occupancy (in terms of thermal comfort and DHW needs). For industrial reasons, this method should use on-board sensors.First, the thesis focuses on identifying the key parameters of the heat pump control, i.e. those with greatest influence on the consumption. This leads to the functions which have to be optimized: heating curve adjustment, time of DHW generation, heating setback anticipation. The objective is to maximize the coefficient of performance and minimize the use of electrical back-ups while ensuring comfort. This is achieved by developing optimized control algorithms. Thanks to forecasts models, based on neural networks, we are able to predict on a short term horizon the building thermal response, the DHW availability and the heat pump performances. The developed models and algorithms have been validated through numerical simulations, and we have evaluated the heat pump performances in comparison to a classic control. The proposed solutions were applied and tested during a heating season on a real heat pump installed in a semi-virtual test bench (real weather and virtual building).
363

La reconnaissance automatisée des nannofossiles calcaires du Cénozoïque / The automatic recognition of the calcareous nannofossils of the Cenozoic

Barbarin, Nicolas 14 March 2014 (has links)
SYRACO est un SYstème de Reconnaissance Automatisée des COccolithes, développé à son origine par Luc Beaufort et Denis Dollfus à partir de 1995 et plus récemment avec Yves Gally. L'utilité d'un tel système est de permettre aux spécialistes un gain de temps majeur dans l'acquisition et le traitement des données. Dans ce travail, le système a été amélioré techniquement et sa reconnaissance a été étendue aux nannofossiles calcaires du Cénozoïque. Ce système fait le tri entre les nannofossiles et les non-nannofossiles avec une efficacité respectivement estimée à 75% et 90 %. Il s'appuie sur une nouvelle base d'images de référence d'espèces datant de l'Eocène Supérieur aux espèces vivantes, ce qui représente des centaines d'espèces avec une forte variabilité morphologique. Il permet de réaliser une classification en 39 morphogroupes par la combinaison de réseaux de neurones artificiels avec des modèles statistiques. Les résultats sont présentés sous forme de comptages automatisés, de données morphométriques (taille, masse...) et de mosaïques d'images. Il peut ainsi être utilisé pour des analyses biostratigraphiques et paléocéanographiques. / SYRACO is an automated recognition system of coccoliths, originally developed since 1995 by Luc Beaufort and Denis Dollfus, and more recently with the help of Yves Gally. The main purpose of this system is for specialists to save time in the acquisition and treatment of data. By this recent work, the system has been technically improved and its ability of recognition has been extended to calcareous nannofossils of the Cenozoic Era. It sorts nannofossils and non-nannofossils with a reliability respectively estimated to 75% and 90%. It is based on a new reference images database of species from the Upper Eocene up to living species. This represents hundreds of species with a high morphological variability. It leads to the establishment of a classification arranged in 39 morphogroups, combining artificial neural networks to statistical models. The results are presented as automated counting, morphometrical data (size, mass...) and mosaics of images. Those results can be valuable in biostratigraphical and paleoceanographical analyses.
364

Définition d'un substrat computationnel bio-inspiré : déclinaison de propriétés de plasticité cérébrale dans les architectures de traitement auto-adaptatif / Design of a bio-inspired computing substrata : hardware plasticity properties for self-adaptive computing architectures

Rodriguez, Laurent 01 December 2015 (has links)
L'augmentation du parallélisme, sur des puces dont la densité d'intégration est en constante croissance, soulève un certain nombre de défis tels que le routage de l'information qui se confronte au problème de "goulot d'étranglement de données", ou la simple difficulté à exploiter un parallélisme massif et grandissant avec les paradigmes de calcul modernes issus pour la plupart, d'un historique séquentiel.Nous nous inscrivons dans une démarche bio-inspirée pour définir un nouveau type d'architecture, basée sur le concept d'auto-adaptation, afin de décharger le concepteur au maximum de cette complexité. Mimant la plasticité cérébrale, cette architecture devient capable de s'adapter sur son environnement interne et externe de manière homéostatique. Il s'inscrit dans la famille du calcul incorporé ("embodied computing") car le substrat de calcul n'est plus pensé comme une boite noire, programmée pour une tâche donnée, mais est façonné par son environnement ainsi que par les applications qu'il supporte.Dans nos travaux, nous proposons un modèle de carte neuronale auto-organisatrice, le DMADSOM (pour Distributed Multiplicative Activity Dependent SOM), basé sur le principe des champs de neurones dynamiques (DNF pour "Dynamic Neural Fields"), pour apporter le concept de plasticité à l'architecture. Ce modèle a pour originalité de s'adapter sur les données de chaque stimulus sans besoin d'un continuum sur les stimuli consécutifs. Ce comportement généralise les cas applicatifs de ce type de réseau car l'activité est toujours calculée selon la théorie des champs neuronaux dynamique. Les réseaux DNFs ne sont pas directement portables sur les technologies matérielles d'aujourd'hui de part leurs forte connectivité. Nous proposons plusieurs solutions à ce problème. La première consiste à minimiser la connectivité et d'obtenir une approximation du comportement du réseau par apprentissage sur les connexions latérales restantes. Cela montre un bon comportement dans certain cas applicatifs. Afin de s'abstraire de ces limitations, partant du constat que lorsqu'un signal se propage de proche en proche sur une topologie en grille, le temps de propagation représente la distance parcourue, nous proposons aussi deux méthodes qui permettent d'émuler, cette fois, l'ensemble de la large connectivité des Neural Fields de manière efficace et proche des technologies matérielles. Le premier substrat calcule les potentiels transmis sur le réseau par itérations successives en laissant les données se propager dans toutes les directions. Il est capable, en un minimum d'itérations, de calculer l'ensemble des potentiels latéraux de la carte grâce à une pondération particulière de l'ensemble des itérations.Le second passe par une représentation à spikes des potentiels qui transitent sur la grille sans cycles et reconstitue l'ensemble des potentiels latéraux au fil des itérations de propagation.Le réseau supporté par ces substrats est capable de caractériser les densités statistiques des données à traiter par l'architecture et de contrôler, de manière distribuée, l'allocation des cellules de calcul. / The increasing degree of parallelism on chip which comes from the always increasing integration density, raises a number of challenges such as routing information that confronts the "bottleneck problem" or the simple difficulty to exploit massive parallelism thanks to modern computing paradigms which derived mostly from a sequential history.In order to discharge the designer of this complexity, we design a new type of bio-inspired self-adaptive architecture. Mimicking brain plasticity, this architecture is able to adapt to its internal and external environment and becomes homeostatic. Belonging to the embodied computing theory, the computing substrate is no longer thought of as a black box, programmed for a given task, but is shaped by its environment and by applications that it supports.In our work, we propose a model of self-organizing neural map, DMADSOM (for Distributed Multiplicative Activity Dependent SOM), based on the principle of dynamic neural fields (DNF for "Dynamic Neural Fields"), to bring the concept of hardware plasticity. This model is able to adapt the data of each stimulus without need of a continuum on consecutive stimuli. This behavior generalizes the case of applications of such networks. The activity remains calculated using the dynamic neural field theory. The DNFs networks are not directly portable onto hardware technology today because of their large connectivity. We propose models that bring solutions to this problem. The first is to minimize connectivity and to approximate the global behavior thanks to a learning rule on the remaining lateral connections. This shows good behavior in some application cases. In order to reach the general case, based on the observation that when a signal travels from place to place on a grid topology, the delay represents the distance, we also propose two methods to emulate the whole wide connectivity of the Neural Field with respect to hardware technology constraints. The first substrate calculates the transmitted potential over the network by iteratively allowing the data to propagate in all directions. It is capable, in a minimum of iterations, to compute the lateral potentials of the map with a particular weighting of all iterations.The second involves a spike representation of the synaptic potential and transmits them on the grid without cycles. This one is hightly customisable and allows a very low complexity while still being capable to compute the lateral potentials.The network supported, by these substrates, is capable of characterizing the statistics densities of the data to be processed by the architecture, and to control in a distributed manner the allocation of computation cells.
365

Démonstration opto-électronique du concept de calculateur neuromorphique par Reservoir Computing / demonstration of optoelectronic concept of neuromorphic computer by reservoir computing

Martinenghi, Romain 16 December 2013 (has links)
Le Reservoir Computing (RC) est un paradigme s’inspirant du cerveau humain, apparu récemment au début des années2000. Il s'agit d'un calculateur neuromorphique habituellement décomposé en trois parties dont la plus importanteappelée "réservoir" est très proche d'un réseau de neurones récurrent. Il se démarque des autres réseaux de neuronesartificiels notamment grâce aux traditionnelles phases d'apprentissage et d’entraînement qui ne sont plus appliquées surla totalité du réseau de neurones mais uniquement sur la lecture du réservoir, ce qui simplifie le fonctionnement etfacilite une réalisation physique. C'est précisément dans ce contexte qu’ont été réalisés les travaux de recherche de cettethèse, durant laquelle nous avons réalisé une première implémentation physique opto-électronique de système RC.Notre approche des systèmes physiques RC repose sur l'utilisation de dynamiques non-linéaires à retards multiples dansl'objectif de reproduire le comportement complexe d'un réservoir. L'utilisation d'un système dynamique purementtemporel pour reproduire la dimension spatio-temporelle d'un réseau de neurones traditionnel, nécessite une mise enforme particulière des signaux d'entrée et de sortie, appelée multiplexage temporel ou encore étape de masquage. Troisannées auront été nécessaires pour étudier et construire expérimentalement nos démonstrateurs physiques basés sur desdynamiques non-linéaires à retards multiples opto-électroniques, en longueur d'onde et en intensité. La validationexpérimentale de nos systèmes RC a été réalisée en utilisant deux tests de calcul standards. Le test NARMA10 (test deprédiction de séries temporelles) et la reconnaissance vocale de chiffres prononcés (test de classification de données) ontpermis de quantifier la puissance de calcul de nos systèmes RC et d'atteindre pour certaines configurations l'état del'art. / Reservoir Computing (RC) is a currently emerging new brain-inspired computational paradigm, which appeared in theearly 2000s. It is similar to conventional recurrent neural network (RNN) computing concepts, exhibiting essentiallythree parts: (i) an input layer to inject the information in the computing system; (ii) a central computational layercalled the Reservoir; (iii) and an output layer which is extracting the computed result though a so-called Read-Outprocedure, the latter being determined after a learning and training step. The main originality compared to RNNconsists in the last part, which is the only one concerned by the training step, the input layer and the Reservoir beingoriginally randomly determined and fixed. This specificity brings attractive features to RC compared to RNN, in termsof simplification, efficiency, rapidity, and feasibility of the learning, as well as in terms of dedicated hardwareimplementation of the RC scheme. This thesis is indeed concerned by one of the first a hardware implementation of RC,moreover with an optoelectronic architecture.Our approach to physical RC implementation is based on the use of a sepcial class of complex system for the Reservoir,a nonlinear delay dynamics involving multiple delayed feedback paths. The Reservoir appears thus as a spatio-temporalemulation of a purely temporal dynamics, the delay dynamics. Specific design of the input and output layer are shownto be possible, e.g. through time division multiplexing techniques, and amplitude modulation for the realization of aninput mask to address the virtual nodes in the delay dynamics. Two optoelectronic setups are explored, one involving awavelength nonlinear dynamics with a tunable laser, and another one involving an intensity nonlinear dynamics with anintegrated optics Mach-Zehnder modulator. Experimental validation of the computational efficiency is performedthrough two standard benchmark tasks: the NARMA10 test (prediction task), and a spoken digit recognition test(classification task), the latter showing results very close to state of the art performances, even compared with purenumerical simulation approaches.
366

Hybridization of dynamic optimization methodologies / L'hybridation de méthodes d'optimisation dynamique

Decock, Jérémie 28 November 2014 (has links)
Dans ce manuscrit de thèse, mes travaux portent sur la combinaison de méthodes pour la prise de décision séquentielle (plusieurs étapes de décision corrélées) dans des environnements complexes et incertains. Les méthodes mises au point sont essentiellement appliquées à des problèmes de gestion et de production d'électricité tels que l'optimisation de la gestion des stocks d'énergie dans un parc de production pour anticiper au mieux la fluctuation de la consommation des clients.Le manuscrit comporte 7 chapitres regroupés en 4 parties : Partie I, « Introduction générale », Partie II, « État de l'art », Partie III, « Contributions » et Partie IV, « Conclusion générale ».Le premier chapitre (Partie I) introduit le contexte et les motivations de mes travaux, à savoir la résolution de problèmes d' « Unit commitment », c'est à dire l'optimisation des stratégies de gestion de stocks d'énergie dans les parcs de production d'énergie. Les particularités et les difficultés sous-jacentes à ces problèmes sont décrites ainsi que le cadre de travail et les notations utilisées dans la suite du manuscrit.Le second chapitre (Partie II) dresse un état de l'art des méthodes les plus classiques utilisées pour la résolution de problèmes de prise de décision séquentielle dans des environnements incertains. Ce chapitre introduit des concepts nécessaires à la bonne compréhension des chapitres suivants (notamment le chapitre 4). Les méthodes de programmation dynamique classiques et les méthodes de recherche de politique directe y sont présentées.Le 3e chapitre (Partie II) prolonge le précédent en dressant un état de l'art des principales méthodes d’optimisation spécifiquement adaptées à la gestion des parcs de production d'énergie et à leurs subtilités. Ce chapitre présente entre autre les méthodes MPC (Model Predictive Control), SDP (Stochastic Dynamic Programming) et SDDP (Stochastic Dual Dynamic Programming) avec pour chacune leurs particularités, leurs avantages et leurs limites. Ce chapitre complète le précédent en introduisant d'autres concepts nécessaires à la bonne compréhension de la suite du manuscrit.Le 4e chapitre (Partie III) contient la principale contribution de ma thèse : un nouvel algorithme appelé « Direct Value Search » (DVS) créé pour résoudre des problèmes de prise de décision séquentielle de grande échelle en milieu incertain avec une application directe aux problèmes d' « Unit commitment ». Ce chapitre décrit en quoi ce nouvel algorithme dépasse les méthodes classiques présentées dans le 3e chapitre. Cet algorithme innove notamment par sa capacité à traiter des grands espaces d'actions contraints dans un cadre non-linéaire, avec un grand nombre de variables d'état et sans hypothèse particulière quant aux aléas du système optimisé (c'est à dire applicable sur des problèmes où les aléas ne sont pas nécessairement Markovien).Le 5e chapitre (Partie III) est consacré à un concept clé de DVS : l'optimisation bruitée. Ce chapitre expose une nouvelle borne théorique sur la vitesse de convergence des algorithmes d'optimisation appliqués à des problèmes bruités vérifiant certaines hypothèses données. Des méthodes de réduction de variance sont également étudiées et appliquées à DVS pour accélérer sensiblement sa vitesse de convergence.Le 6e chapitre (Partie III) décrit un résultat mathématique sur la vitesse de convergence linéaire d’un algorithme évolutionnaire appliqué à une famille de fonctions non quasi-convexes. Dans ce chapitres, il est prouvé que sous certaines hypothèses peu restrictives sur la famille de fonctions considérée, l'algorithme présenté atteint une vitesse de convergence linéaire.Le 7e chapitre (Partie IV) conclut ce manuscrit en résumant mes contributions et en dressant quelques pistes de recherche intéressantes à explorer. / This thesis is dedicated to sequential decision making (also known as multistage optimization) in uncertain complex environments. Studied algorithms are essentially applied to electricity production ("Unit Commitment" problems) and energy stock management (hydropower), in front of stochastic demand and water inflows. The manuscript is divided in 7 chapters and 4 parts: Part I, "General Introduction", Part II, "Background Review", Part III, "Contributions" and Part IV, "General Conclusion". This first chapter (Part I) introduces the context and motivation of our work, namely energy stock management. "Unit Commitment" (UC) problems are a classical example of "Sequential Decision Making" problem (SDM) applied to energy stock management. They are the central application of our work and in this chapter we explain main challenges arising with them (e.g. stochasticity, constraints, curse of dimensionality, ...). Classical frameworks for SDM problems are also introduced and common mistakes arising with them are be discussed. We also emphasize the consequences of these - too often neglected - mistakes and the importance of not underestimating their effects. Along this chapter, fundamental definitions commonly used with SDM problems are described. An overview of our main contributions concludes this first chapter. The second chapter (Part II) is a background review of the most classical algorithms used to solve SDM problems. Since the applications we try to solve are stochastic, we there focus on resolution methods for stochastic problems. We begin our study with classical Dynamic Programming methods to solve "Markov Decision Processes" (a special kind of SDM problems with Markovian random processes). We then introduce "Direct Policy Search", a widely used method in the Reinforcement Learning community. A distinction is be made between "Value Based" and "Policy Based" exploration methods. The third chapter (Part II) extends the previous one by covering the most classical algorithms used to solve UC's subtleties. It contains a state of the art of algorithms commonly used for energy stock management, mainly "Model Predictive Control", "Stochastic Dynamic Programming" and "Stochastic Dual Dynamic Programming". We briefly overview distinctive features and limitations of these methods. The fourth chapter (Part III) presents our main contribution: a new algorithm named "Direct Value Search" (DVS), designed to solve large scale unit commitment problems. We describe how it outperforms classical methods presented in the third chapter. We show that DVS is an "anytime" algorithm (users immediately get approximate results) which can handle large state spaces and large action spaces with non convexity constraints, and without assumption on the random process. Moreover, we explain how DVS can reduce modelling errors and can tackle challenges described in the first chapter, working on the "real" detailed problem without "cast" into a simplified model. Noisy optimisation is a key component of DVS algorithm; the fifth chapter (Part III) is dedicated to it. In this chapter, some theoretical convergence rate are studied and new convergence bounds are proved - under some assumptions and for given families of objective functions. Some variance reduction techniques aimed at improving the convergence rate of graybox noisy optimization problems are studied too in the last part of this chapter. Chapter sixth (Part III) is devoted to non-quasi-convex optimization. We prove that a variant of evolution strategy can reach a log-linear convergence rate with non-quasi-convex objective functions. Finally, the seventh chapter (Part IV) concludes and suggests some directions for future work.
367

Advances in deep learning with limited supervision and computational resources

Almahairi, Amjad 12 1900 (has links)
Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la technologie pour une vaste gamme de tâches, comme la reconnaissance d'objets, la modélisation du langage et la traduction automatique. Mis à part le progrès important établi dans les architectures et les procédures de formation des réseaux de neurones profonds, deux facteurs ont été la clé du succès remarquable de l'apprentissage profond : la disponibilité de grandes quantités de données étiquetées et la puissance de calcul massive. Cette thèse par articles apporte plusieurs contributions à l'avancement de l'apprentissage profond, en particulier dans les problèmes avec très peu ou pas de données étiquetées, ou avec des ressources informatiques limitées. Le premier article aborde la question de la rareté des données dans les systèmes de recommandation, en apprenant les représentations distribuées des produits à partir des commentaires d'évaluation de produits en langage naturel. Plus précisément, nous proposons un cadre d'apprentissage multitâches dans lequel nous utilisons des méthodes basées sur les réseaux de neurones pour apprendre les représentations de produits à partir de textes de critiques de produits et de données d'évaluation. Nous démontrons que la méthode proposée peut améliorer la généralisation dans les systèmes de recommandation et atteindre une performance de pointe sur l'ensemble de données Amazon Reviews. Le deuxième article s'attaque aux défis computationnels qui existent dans l'entraînement des réseaux de neurones profonds à grande échelle. Nous proposons une nouvelle architecture de réseaux de neurones conditionnels permettant d'attribuer la capacité du réseau de façon adaptative, et donc des calculs, dans les différentes régions des entrées. Nous démontrons l'efficacité de notre modèle sur les tâches de reconnaissance visuelle où les objets d'intérêt sont localisés à la couche d'entrée, tout en maintenant une surcharge de calcul beaucoup plus faible que les architectures standards des réseaux de neurones. Le troisième article contribue au domaine de l'apprentissage non supervisé, avec l'aide du paradigme des réseaux antagoniste génératifs. Nous introduisons un cadre fléxible pour l'entraînement des réseaux antagonistes génératifs, qui non seulement assure que le générateur estime la véritable distribution des données, mais permet également au discriminateur de conserver l'information sur la densité des données à l'optimum global. Nous validons notre cadre empiriquement en montrant que le discriminateur est capable de récupérer l'énergie de la distribution des données et d'obtenir une qualité d'échantillons à la fine pointe de la technologie. Enfin, dans le quatrième article, nous nous attaquons au problème de l'apprentissage non supervisé à travers différents domaines. Nous proposons un modèle qui permet d'apprendre des transformations plusieurs à plusieurs à travers deux domaines, et ce, à partir des données non appariées. Nous validons notre approche sur plusieurs ensembles de données se rapportant à l'imagerie, et nous montrons que notre méthode peut être appliquée efficacement dans des situations d'apprentissage semi-supervisé. / Deep neural networks are the cornerstone of state-of-the-art systems for a wide range of tasks, including object recognition, language modelling and machine translation. In the last decade, research in the field of deep learning has led to numerous key advances in designing novel architectures and training algorithms for neural networks. However, most success stories in deep learning heavily relied on two main factors: the availability of large amounts of labelled data and massive computational resources. This thesis by articles makes several contributions to advancing deep learning, specifically in problems with limited or no labelled data, or with constrained computational resources. The first article addresses sparsity of labelled data that emerges in the application field of recommender systems. We propose a multi-task learning framework that leverages natural language reviews in improving recommendation. Specifically, we apply neural-network-based methods for learning representations of products from review text, while learning from rating data. We demonstrate that the proposed method can achieve state-of-the-art performance on the Amazon Reviews dataset. The second article tackles computational challenges in training large-scale deep neural networks. We propose a conditional computation network architecture which can adaptively assign its capacity, and hence computations, across different regions of the input. We demonstrate the effectiveness of our model on visual recognition tasks where objects are spatially localized within the input, while maintaining much lower computational overhead than standard network architectures. The third article contributes to the domain of unsupervised learning with the generative adversarial networks paradigm. We introduce a flexible adversarial training framework, in which not only the generator converges to the true data distribution, but also the discriminator recovers the relative density of the data at the optimum. We validate our framework empirically by showing that the discriminator is able to accurately estimate the true energy of data while obtaining state-of-the-art quality of samples. Finally, in the fourth article, we address the problem of unsupervised domain translation. We propose a model which can learn flexible, many-to-many mappings across domains from unpaired data. We validate our approach on several image datasets, and we show that it can be effectively applied in semi-supervised learning settings.
368

Recognition of Facial Expressions with Autoencoders and Convolutional-Nets

Almousli, Hani 12 1900 (has links)
No description available.
369

Algorithmes d’apprentissage profonds supervisés et non-supervisés: applications et résultats théoriques

Thibodeau-Laufer, Eric 09 1900 (has links)
No description available.
370

Advances in scaling deep learning algorithms

Dauphin, Yann 06 1900 (has links)
No description available.

Page generated in 0.0763 seconds