• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 349
  • 93
  • 31
  • 2
  • 2
  • 1
  • Tagged with
  • 475
  • 475
  • 332
  • 187
  • 80
  • 79
  • 72
  • 62
  • 58
  • 53
  • 42
  • 42
  • 42
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Ecrire la révolution égyptienne de 2011 : entre témoignage et fiction / Writing the Egyptian revolution of 2011 : between testimony and fiction

Galal Mohamed, Ahmed 08 December 2017 (has links)
Cette recherche porte sur l’analyse des problématiques narratologiques et stylistiques dans les écrits parus à la fin du soulèvement populaire survenu en Égypte en 2011. Elle entrecroise deux axes, l’un notionnel et l’autre analytique. D’une part, elle aborde la question du genre littéraire, de l’espace, de la temporalité et de la langue d’écriture. D’autre part, on se propose de comparer cinq textes, qu’on envisagera dans leur double appartenance littéraire et thématique : Ayyām al-Taḥrīr (2011), Cairo : my city, our revolution (2012), al-Ṯawra 2.0 (2012), Aǧniḥat al-farāša (2011) et Sabʿat ayyām fī al-Taḥrīr (2011). Nous examinerons ces œuvres dans le cadre de ce que les critiques ont désigné sous le nom d’adab al-ṯawra ou d’adabiyyāt al-ṯawra – « littérature(s) de la révolution » – et tenterons d’identifier les caractéristiques et les particularités de cette très jeune production. L’enjeu est d’étudier comment les écrivains égyptiens contemporains produisent des narrations à travers lesquelles se déploie un processus d’émerveillement, de reconfiguration et de modification de la représentation du citoyen, notamment celle des jeunes. / This research focuses on narratological and stylistic issues in the writings that appeared at the end of the popular uprising in Egypt in 2011. It combines two axes, one notional and the other analytical. On the one hand, it deals with questions of literary genre, space, temporality and language of writing. On the other hand, it offers to compare five texts which will be examined at the literary as well as at the thematic level : Ayyām al-Taḥrīr (2011), Cairo: my city, our revolution (2012), al-Ṯawra 2.0 (2012), Aǧniḥat al-farāša and Sabʿat ayyām fī al-Taḥrīr (2011). These works are considered within the framework of what critics have called adab al-ṯawra or adabiyyāt al-ṯawra--"literature(s) of the revolution". I try to highlight the characteristics and peculiarities of this very young production. The challenge here is to study how contemporary Egyptian writers have produced narratives which reveal a process of wonderment, reconfiguration and transformation of the representation of the citizen, especially that of young people.
92

Détection et analyse d’événement dans les messages courts / Event detection and analysis on short text messages

Edouard, Amosse 02 October 2017 (has links)
Les réseaux sociaux ont transformé le Web d'un mode lecture, où les utilisateurs pouvaient seulement consommer les informations, à un mode interactif leur permettant de les créer, partager et commenter. Un défi majeur du traitement d'information dans les médias sociaux est lié à la taille réduite des contenus, leur nature informelle et le manque d'informations contextuelles. D'un autre côté, le web contient des bases de connaissances structurées à partir de concepts d'ontologies, utilisables pour enrichir ces contenus. Cette thèse explore le potentiel d'utiliser les bases de connaissances du Web de données, afin de détecter, classifier et suivre des événements dans les médias sociaux, particulièrement Twitter. On a abordé 3 questions de recherche : i) Comment extraire et classifier les messages qui rapportent des événements ? ii) Comment identifier des événements précis ? iii) Étant donné un événement, comment construire un fil d'actualité représentant les différents sous-événements ? Les travaux de la thèse ont contribué à élaborer des méthodes pour la généralisation des entités nommées par des concepts d'ontologies pour mitiger le sur-apprentissage dans les modèles supervisés ; une adaptation de la théorie des graphes pour modéliser les relations entre les entités et les autres termes et ainsi caractériser des événements pertinents ; l'utilisation des ontologies de domaines et les bases de connaissances dédiées, pour modéliser les relations entre les caractéristiques et les acteurs des événements. Nous démontrons que l'enrichissement sémantique des entités par des informations du Web de données améliore la performance des modèles d'apprentissages supervisés et non supervisés. / In the latest years, the Web has shifted from a read-only medium where most users could only consume information to an interactive medium allowing every user to create, share and comment information. The downside of social media as an information source is that often the texts are short, informal and lack contextual information. On the other hand, the Web also contains structured Knowledge Bases (KBs) that could be used to enrich the user-generated content. This dissertation investigates the potential of exploiting information from the Linked Open Data KBs to detect, classify and track events on social media, in particular Twitter. More specifically, we address 3 research questions: i) How to extract and classify messages related to events? ii) How to cluster events into fine-grained categories? and 3) Given an event, to what extent user-generated contents on social medias can contribute in the creation of a timeline of sub-events? We provide methods that rely on Linked Open Data KBs to enrich the context of social media content; we show that supervised models can achieve good generalisation capabilities through semantic linking, thus mitigating overfitting; we rely on graph theory to model the relationships between NEs and the other terms in tweets in order to cluster fine-grained events. Finally, we use in-domain ontologies and local gazetteers to identify relationships between actors involved in the same event, to create a timeline of sub-events. We show that enriching the NEs in the text with information provided by LOD KBs improves the performance of both supervised and unsupervised machine learning models.
93

Matching user accounts across online social networks : methods and applications / Corrélation des profils d'utilisateurs dans les réseaux sociaux : méthodes et applications

Goga, Oana 21 May 2014 (has links)
La prolifération des réseaux sociaux et des données à caractère personnel apporte de nombreuses possibilités de développement de nouvelles applications. Au même temps, la disponibilité de grandes quantités de données à caractère personnel soulève des problèmes de confidentialité et de sécurité. Dans cette thèse, nous développons des méthodes pour identifier les différents comptes d'un utilisateur dans des réseaux sociaux. Nous étudions d'abord comment nous pouvons exploiter les profils publics maintenus par les utilisateurs pour corréler leurs comptes. Nous identifions quatre propriétés importantes - la disponibilité, la cohérence, la non-impersonabilite, et la discriminabilité (ACID) - pour évaluer la qualité de différents attributs pour corréler des comptes. On peut corréler un grand nombre de comptes parce-que les utilisateurs maintiennent les mêmes noms et d'autres informations personnelles à travers des différents réseaux sociaux. Pourtant, il reste difficile d'obtenir une précision suffisant pour utiliser les corrélations dans la pratique à cause de la grandeur de réseaux sociaux réels. Nous développons des schémas qui obtiennent des faible taux d'erreur même lorsqu'elles sont appliquées dans les réseaux avec des millions d'utilisateurs. Ensuite, nous montrons que nous pouvons corréler les comptes d'utilisateurs même si nous exploitons que leur activité sur un les réseaux sociaux. Ça sa démontre que, même si les utilisateurs maintient des profils distincts nous pouvons toutefois corréler leurs comptes. Enfin, nous montrons que, en identifiant les comptes qui correspondent à la même personne à l'intérieur d'un réseau social, nous pouvons détecter des imitateurs. / The proliferation of social networks and all the personal data that people share brings many opportunities for developing exciting new applications. At the same time, however, the availability of vast amounts of personal data raises privacy and security concerns.In this thesis, we develop methods to identify the social networks accounts of a given user. We first study how we can exploit the public profiles users maintain in different social networks to match their accounts. We identify four important properties – Availability, Consistency, non- Impersonability, and Discriminability (ACID) – to evaluate the quality of different profile attributes to match accounts. Exploiting public profiles has a good potential to match accounts because a large number of users have the same names and other personal infor- mation across different social networks. Yet, it remains challenging to achieve practically useful accuracy of matching due to the scale of real social networks. To demonstrate that matching accounts in real social networks is feasible and reliable enough to be used in practice, we focus on designing matching schemes that achieve low error rates even when applied in large-scale networks with hundreds of millions of users. Then, we show that we can still match accounts across social networks even if we only exploit what users post, i.e., their activity on a social networks. This demonstrates that, even if users are privacy conscious and maintain distinct profiles on different social networks, we can still potentially match their accounts. Finally, we show that, by identifying accounts that correspond to the same person inside a social network, we can detect impersonators.
94

Filtrage et Recommandation sur les Réseaux Sociaux / Filtering and Recommendation in Social Networks

Dahimene, Mohammed Ryadh 08 December 2014 (has links)
Ces dernières années, le contenu disponible sur le Web a augmenté de manière considérable dans ce qu’on appelle communément le Web social. Pour l’utilisateur moyen, il devient de plus en plus difficile de recevoir du contenu de qualité sans se voir rapidement submergé par le flot incessant de publications. Pour les fournisseurs de service, le passage à l’échelle reste problématique. L’objectif de cette thèse est d’aboutir à une meilleure expérience utilisateur à travers la mise en place de systèmes de filtrage et de recommandation. Le filtrage consiste à offrir la possibilité à un utilisateur de ne recevoir qu’un sous ensemble des publications des comptes auxquels il est abonné. Tandis que la recommandation permet la découverte d’information à travers la suggestion de comptes à suivre sur des sujets donnés. Nous avons élaboré MicroFilter un système de filtrage passant à l’échelle capable de gérer des flux issus du Web ainsi que RecLand, un système de recommandation qui tire parti de la topologie du réseau ainsi que du contenu afin de générer des recommandations pertinentes. / In the last years, the amount of available data on the social Web has exploded. For the average user, it became hard to find quality content without being overwhelmed with publications. For service providers, the scalability of such services became a challenging task. The aim of this thesis is to achieve a better user experience by offering the filtering and recommendation features. Filtering consists to provide for a given user, the ability of receiving only a subset of the publications from the direct network. Where recommendation allows content discovery by suggesting relevant content producers on given topics. We developed MicroFilter, a scalable filtering system able to handle Web-like data flows and RecLand, a recommender system that takes advantage of the network topology as well as the content in order to provide relevant recommendations.
95

Computational models of trust and reputation in online social networks / Nouveaux modèles pour la gestion de la confiance et de la réputation dans les réseaux sociaux

Hamdi, Sana 22 January 2016 (has links)
Les réseaux sociaux ont connu une évolution dramatique et ont été utilisés comme des moyens pour exercer plusieurs activités. En fait, via les réseaux sociaux, les utilisateurs peuvent découvrir, gérer et partager leurs expériences et avis en ligne. Cependant, la nature ouverte et décentralisée des réseaux sociaux les rend vulnérables à l'apparition des utilisateurs malveillants. Par conséquent, les utilisateurs éventuels peuvent faire face à plusieurs de problèmes liés à la confiance. Ainsi, une évaluation de confiance effective et efficace est très importante pour la prise de décisions par ces utilisateurs. En effet, elle leur fournit des informations précieuses leur permettant de faire la différence entre ceux dignes et indignes de confiance. Cette thèse a pour but de fournir des méthodes de gestion de confiance et de réputation des utilisateurs des réseaux sociaux efficaces et qui peuvent être présentées par les quatre contributions suivantes. La première contribution présente une complexe extraction des contextes et des intérêts des utilisateurs, où les informations contextuelles sociales complexes sont prises en compte, reflétant mieux les réseaux sociaux. De plus, nous proposons un enrichissement de l'ontologie Dbpedia par des concepts de folksonomies.Ensuite, nous proposons une approche de gestion de la confiance, intitulée IRIS, permettant la génération du réseau de confiance et le calcul de la confiance directe. Cette approche considère les activités sociales des utilisateurs incluant leurs relations sociales, préférences et interactions.La troisième contribution de cette thèse est la gestion de transitivité de confiance dans les réseaux sociaux. En fait, c'est nécessaire et significatif d'évaluer la confiance entre deux participants n’ayant pas des interactions directes. Nous proposons ainsi, un modèle d'inférence de confiance, appelé TISON, pour évaluer la confiance indirecte dans les réseaux sociaux.La quatrième contribution de cette thèse consiste à gérer la réputation des utilisateurs des réseaux sociaux. Pour ce faire, nous proposons deux nouveaux algorithmes. Nous présentons un nouvel algorithme exclusif pour la classification des utilisateurs basés sur leurs réputations, appelé le RePC. De plus, nous proposons un deuxième algorithme, FCR, qui présente une extension floue de RePC. Pour les approches proposées, nous avons conduits différentes expérimentations sur des ensembles de données réels ou aléatoires. Les résultats expérimentaux ont démontré que nos algorithmes proposés produisent de meilleurs résultats, en termes de qualité des résultats livrés et d’efficacité, par rapport à différentes approches introduites dans littérature / Online Social Networks (OSNs) have known a dramatic increase and they have been used as means for a rich variety of activities. In fact, within OSNs, usersare able to discover, extend, manage, and leverage their experiences and opinionsonline. However, the open and decentralized nature of the OSNs makes themvulnerable to the appearance of malicious users. Therefore, prospective users facemany problems related to trust. Thus, effective and efficient trust evaluation isvery crucial for users’ decision-making. It provides valuable information to OSNsusers, enabling them to make difference between trustworthy and untrustworthyones. This thesis aims to provide effective and efficient trust and reputationmanagement methods to evaluate trust and reputation of OSNs users, which canbe divided into the following four contributions.The first contribution presents a complex trust-oriented users’ contexts andinterests extraction, where the complex social contextual information is taken intoaccount in modelling, better reflecting the social networks in reality. In addition,we propose an enrichment of the Dbpedia ontology from conceptualizations offolksonomies.We second propose the IRIS (Interactions, Relationship types and Interest Similarity)trust management approach allowing the generation of the trust networkand the computation of direct trust. This model considers social activities of usersincluding their social relationships, preferences and interactions. The intentionhere is to form a solid basis for the reputation and indirect trust models.The third contribution of this thesis is trust inference in OSNs. In fact, it isnecessary and significant to evaluate the trust between two participants whomhave not direct interactions. We propose a trust inference model called TISON(Trust Inference in Social Networks) to evaluate Trust Inference within OSNs.The fourth contribution of this thesis consists on the reputation managementin OSNs. To manage reputation, we proposed two new algorithms. We introducea new exclusive algorithm for clustering users based on reputation, called RepC,based on trust network. In addition, we propose a second algorithm, FCR, whichis a fuzzy extension of RepC.For the proposed approaches, extensive experiments have been conducted onreal or random datasets. The experimental results have demonstrated that ourproposed algorithms generate better results, in terms of the utility of delivered results and efficiency, than do the pioneering approaches of the literature
96

Marketing numérique et tourisme : le cas d'Air transat concernant l'apport des réseaux sociaux tels que Facebook, Twitter, Instagram et Pinterest

Hochlef, Malek January 2021 (has links) (PDF)
No description available.
97

Amélioration de l'expérience d'apprentissage dans un système hypermédia adaptatif éducatif grâce aux données extraites et inférées à partir des réseaux sociaux

Sakout Andaloussi, Kenza 29 January 2020 (has links)
Avec l'émergence des formations en ligne accessibles pour tous, la personnalisation de l'apprentissage devient de plus en plus cruciale et présente de nouveaux défis aux chercheurs du domaine. Il est actuellement nécessaire de tenir compte de l'hétérogénéité du public cible et lui présenter des contenus éducatifs adaptés à ses besoins et sa façon d'apprendre afin de lui permettre de profiter au maximum de ces formations et éviter le décrochage. Ce travail de recherche s'inscrit dans le cadre des travaux sur la personnalisation de l'apprentissage à travers les systèmes hypermédias adaptatifs utilisés en éducation (SHAE). Ces systèmes ont la vocation de personnaliser le processus d'apprentissage selon des critères bien spécifiques, tels que les pré-requis ou plus souvent les styles d'apprentissage, en générant un chemin d'apprentissage adéquat. Les SHAE se basent généralement sur trois modèles principaux à savoir le modèle apprenant, le modèle du domaine et le modèle d'adaptation. Bien que la personnalisation du processus d'apprentissage offerte par les SHAE actuels soit avantageuse pour les apprenants, elle présente encore certaines limites. D'un côté, juste le fait de personnaliser l'apprentissage augmente les chances que le contenu présenté à l'apprenant lui soit utile et sera ainsi mieux compris. Mais d'un autre côté, la personnalisation dans les SHAE existants se contente des critères niveau de connaissances et style d'apprentissage, et elle s'applique seulement à certains aspects qui n'ont pas évolué depuis leur création, à savoir le contenu, la présentation et la navigation. Ceci remet en question la pertinence des objets d'apprentissage attribués aux apprenants et la motivation de ces derniers à faire usage des SHAE sachant que ceux-ci se basent essentiellement sur les questionnaires pour la constitution de leur modèle apprenant. Suite à une étude empirique d'une cinquantaine de SHAE existants, révélant leurs atouts et limites, certains objectifs de recherche ont été identifiés afin d'améliorer l'expérience d'apprentissage à travers ces systèmes. Ces objectifs visent à établir un modèle de SHAE capable de (i) déterminer les données du modèle apprenant de façon implicite à partir des réseaux sociaux tout en répondant aux standards associés à ce modèle afin de construire le modèle apprenant; (ii) favoriser la collaboration entre les différents apprenants qui seraient mieux motivés à apprendre en collaborant; (iii) personnaliser, de façon automatique, de nouveaux aspects à savoir l'approche pédagogique, la collaboration et le feedback selon les traits de personnalité de l'apprenant en plus des trois volets existants. Un modèle de SHAE a été proposé pour répondre à ces objectifs. Ce modèle permet d’extraire les données personnelles de l'utilisateur à partir de ses réseaux sociaux et de prédire ses traits de personnalité selon son interaction avec ces réseaux. Par la suite, il est possible d'adapter les objets d'apprentissage, sur la base d'un système de recommandation, à ces traits de personnalité en plus du style d'apprentissage et du niveau de connaissances des apprenants. L'adaptation aux traits de personnalité de l'apprenant selon le modèle Big Five a permis de personnaliser de nouveaux aspects tels l'approche pédagogique, le type de collaboration et le feedback. Un prototype, "ColadaptLearn", conçu à partir de ce modèle et expérimenté avec un ensemble d'étudiants a permis de valider les choix du prototype pour les objets d'apprentissage, selon les règles préétablies, en les confrontant aux choix faits par les étudiants. Ces données ont été utilisées pour développer un réseau bayésien permettant de prédire les objets d'apprentissage adéquats aux futurs apprenants. Les résultats de l’expérimentation ont montré qu'il y a une bonne concordance entre les choix du prototype et ceux des apprenants, en plus d'une satisfaction de ces derniers par rapport aux feedbacks reçus, ce qui appuie le rajout des nouveaux aspects proposés. Comme suite à cette thèse, il est envisageable d'appliquer le modèle proposé dans des environnements d'apprentissage plus larges de types cours en ligne ouverts et massifs, jeu sérieux ou même des formations mobiles, ce qui contribuerait à mieux valider les propos amenés. Il est aussi possible d’utiliser des techniques d'apprentissage automatique autres que les réseaux bayésiens pour la prédiction des objets d'apprentissage adaptés. Finalement, il serait intéressant d'explorer d'autres sources de données qui pourraient fournir plus d'informations sur l'apprenant de façon implicite tels ses centres d'intérêt ou ses émotions auxquels un SHAE pourrait s'adapter. / With the growth of online learning accessible to all, learning personalization is becoming increasingly crucial and presents new challenges for researchers. It is currently essential to take into account the heterogeneity of the target audience and adapt educational content to their needs and learning style in such a way that they are able to fully benefit from these learning forms and prevent them from dropping out. This research work addresses learning personalization through adaptive educational hypermedia systems (AEHS). These systems are designed to customize the learning process according to specific criteria, such as prerequisites or, more often, learning styles, by generating a suitable learning path. AEHS are generally based on three main models: the learning model, the domain model and the adaptation model. Although the learning process customization offered by current AEHS is beneficial to learners, it still has some limitations. On one hand, just the fact of personalizing learning increases the likelihood that the content presented to the learner will be useful and thus better understood. But on the other hand, customization in existing AEHS is limited to the criteria knowledge level and learning style and applies only to certain aspects which have not evolved since their creation, namely content, presentation and navigation. This questions the relevance of the learning objects assigned to learners and their motivation to use such AEHS, knowing that they rely essentially on questionnaires to build their learner model. After conducting an empirical study of 50 existing AEHS, revealing their strengths and limitations, some research objectives were identified to improve the learning experience through such systems. These objectives aim to establish an AEHS model which is able to (i) implicitly identify the learning model data on the basis of social networks while meeting the associated standards; (ii) promote collaboration between different learners who would be better motivated to learn while collaborating; (iii) automatically customize new aspects such as the teaching approach, collaboration and feedback according to learners' personality traits in addition to the three existing ones. An AEHS model has been proposed to meet these objectives. This model makes it possible to extract the user's personal data from his social networks and to predict his personality traits depending on his interaction with these networks. Thereafter, it is possible to adapt the learning objects, on the basis of a recommendation system, to these personality traits in addition to the criteria learning style and knowledge level. Adapting to the learner's personality traits according to the Big Five model enabled the customization of new aspects such as the pedagogical approach, the collaboration type and the feedback. A prototype, "ColadaptLearn", based on this model and experimented with a group of students, validated the prototype's choices for learning objects while confronting them to the students' choices. These data were then used to build a Bayesian network to predict the appropriate learning objects for future learners. The experimental results showed that there is a good match between the prototype choices and those of learners, in addition to learners' satisfaction regarding the feedback received, which supports the addition of the proposed new aspects. As a follow-up to this thesis, it is possible to apply the proposed model in a larger learning environment such as massive open online courses (MOOC), serious games or mobile learning, which would help to validate the proposals made. It is also possible to use other automatic learning techniques than Bayesian networks to predict suitable learning objects. Finally, it would be interesting to explore other data sources that could implicitly provide more information about the learner, such as his or her interests or emotions that an SHAE could adapt to.
98

Analyse économétrique de l'assimilation de la cohorte d'immigrants arrivée au Canada entre 2000 et 2001 et de l'impact des réseaux sociaux sur leur processus d'assimilation

Gauthier, Geneviève 13 April 2018 (has links)
Ce mémoire consiste en une analyse du processus d'assimilation de la cohorte d immigrants arrivés au Canada entre octobre 2000 et septembre 2001 et de l'impact des réseaux sociaux sur leur processus d'assimilation. Les données utilisées proviennent de l'enquête longitudinale auprès des immigrants du Canada (ELIC) réalisée conjointement par Statistique Canada et Citoyenneté et Immigration Canada. Compte tenu des dissimilitudes majeures des fonctions d'offre de travail entre les hommes et les femmes, l'analyse est limitée aux immigrants masculins. Un modèle de type panel non balancé, estimé par la méthode à effets fixes est utilisé pour l'analyse afin de contrôler pour l'hétérogénéité individuelle non observée. Les résultats concernant les réseaux sociaux constituent la contribution principale de ce mémoire. Bien que la littérature suggère communément que la présence de réseaux sociaux augmente les probabilités d'emploi de l'immigrant, notre analyse ne montre aucun impact significatif lié à la présence des réseaux sociaux sur les gains horaires de l'immigrant. Les résultats montrent même que la présence de réseaux sociaux entraîne un retard de croissance des gains horaires substant iels, comparativement aux irnmigrants ne disposant pas de réseaux. Un retard de plus de 15% dès les 6 premières années passées au Canada
99

L'impact du soutien social perçu sur l'adaptation des étudiants africains

Levesque, Manon 23 February 2022 (has links)
Cette étude suppose que la capacité des étudiants africains à faire face aux exigences des études supérieures et aux nouvelles situations de vie inhérentes à leur statut d'étranger se manifestera par un état plus ou moins stressé, dont l'effet sur leur adaptation variera en fonction du soutien social qu'ils auront perçu. L'adaptation, mesurée par un indice de dépression, est mise en relation avec une mesure de stress psychologique, et une mesure de soutien social perçu (permettant d'investiguer deux aspects du soutien social: l'intensité et la diversité), de même qu'avec certaines caractéristiques socio-démographiques. Aucune relation n'est observée entre l'un ou l'autre des aspects du soutien et le stress psychologique et la dépression. Toutefois, la répartition des sujets en deux groupes selon le niveau de stress rapporté révèle, pour le groupe stressé, un effet significatif (p< .10) de la diversité du soutien perçu sur les scores au IDB. Parmi les meilleurs prédicteurs de l'adaptation des étudiants africains en milieu québécois, on retrouve les variables sexe et difficulté avec la langue qui expliquent 22% de la variance au IDB et durée de séjour et sexe qui expliquent 31% de la variance au MSP. Par ailleurs, l'examen des sources de soutien perçu par les étudiants africains met en évidence l'importance des confrères africains. Ces résultats sont discutés à la lumière des études dans ce domaine.
100

Le rôle de l'interaction individu/environnement dans le fonctionnement social de personnes âgées ayant des atteintes cognitives légères

Lagrange, Véronique 11 April 2018 (has links)
L'objectif de ce projet était de mieux comprendre la relation entre un individu âgé ayant des atteintes cognitives légères et son environnement, dans le cadre de l'accomplissement de ses activités quotidiennes. Cette recherche était descriptive et exploratoire. Le devis de recherche comportait une composante qualitative (entretiens semi-dirigés) et une composante quantitative {Échelle de dépression gériatrique). Les données qualitatives étaient toutefois prépondérantes et elles ont été soumises à des analyses thématiques de contenu. Plusieurs dimensions telles que les manifestations affectives, l'environnement, la participation sociale et la qualité de vie ont été explorées. Les huit personnes recrutées proviennent de Québec et de Lévis. Les analyses ont montré que plusieurs facteurs sont déterminants dans le bien-être, la qualité de vie et la participation sociale des répondants. L'acceptation de la maladie, la redéfinition de soi, la qualité des relations familiales et sociales et la participation à un groupe de soutien ont ainsi été identifiées.

Page generated in 0.0616 seconds