Spelling suggestions: "subject:"désistance een fractionnellement"" "subject:"désistance een traductionnellement""
1 |
Water Resistance of Scots Pine Joints Produced by Linear Friction Welding / Résistance à l'eau du joint de soudure par friction linéaire du Pin SylvestreVaziri, Mojgan 30 September 2011 (has links)
Le soudage du bois est une technique d'assemblage sans adhésif de deux pièces de bois, leur soudure étant produite par friction mécanique sous pression des deux pièces. Ce procédé, applicable à des pièces de bois plates, d'essences identiques ou différentes, se prête à la fabrication de meubles et à la menuiserie. Cependant, le joint obtenu n'est pas de classe "extérieur", ce qui le réserve à un usage "intérieur". En effet, un joint destiné à une utilisation extérieure ou en milieu à humidité variable doit présenter une résistance élevée à l'eau. L'objectif principal de cette thèse est d'étudier la résistance à l'eau du bois soudé. A cet effet, des méthodes d'essais complémentaires et non-destructrices ont été utilisées, comme le scanner ou l'imagerie par résonance magnétique (IRM). L'influence des paramètres de soudage et des propriétés du bois sur, d'une part, la formation et la propagation des fissures dans la ligne de soudure, et sur, d'autre part, la densité et l'absorption d'eau de la soudure a été ainsi étudiée. Les expériences de cette thèse seront menées sur des échantillons de pin (Pinus sylvestris) de dimensions 200 mm x20 mm x 40 mm, coupés dans la direction longitudinale du fil du bois. La Norme Européenne EN 205 a servi de cadre pour déterminer la résistance des échantillons de pin en traction-cisaillement. Les méthodes d'essais (non-destructrices) ont été utilisées selon leur pertinence: le scanner a servi à étudier la formation et la propagation des fissures; l'imagerie par résonance magnétique (IRM) a permis quant à elle de caractériser la pénétration et l'infiltration d'eau dans le bois soudé.Le mécanisme d'adhérence du pin a été étudié grâce à la RMN MAS (spectrométrie à résonance magnétique nucléaire avec polarisation croisée et rotation à l?angle magique) du carbone13 et à la micro-densitométrie par rayons X. Ces différentes méthodes, non destructrices, offrent l'avantage d'une analyse non invasive et l'élimination de facteurs parasites liés à la préparation et à la coupe du bois. Voici en résumé les résultats obtenus les plus marquants: (1) Le scanner et l'imagerie par résonance magnétique (IRM) sont des méthodes de recherche particulièrement polyvalentes et adaptées à l'étude des bois soudés. (2) L'utilisation de bois de coeur, une pression de soudage de 1.3 Mpa et un temps de soudage de 1.5 s permettent d'augmenter la résistance à l'eau du pin soudé. (3) Des tests d'optimisation ont montré que la résistance du pin en traction-cisaillement est plus sensible aux variations de temps de soudage qu'au temps de refroidissement et qu'elle peut être optimisée à plus de 9.7 MPa en respectant une pression de 1.3 Mpa, un temps de soudage > 3.5 s et un temps de refroidissement < 60 s. (4) La résistance à l'eau du bois soudé peut être améliorée dans une certaine mesure en faisant varier paramètres de soudage et propriétés des essences, mais dans tous les cas, le recours à un imperméabilisant naturel et écologique reste nécessaire. (5) Le pin soudé possède une résistance à l'eau et en traction-cisaillement inhabituellement élevée, cela pouvant s'expliquer par une teneur en composés extractifs augmentée. (6) Des essais sous IRM ont montré que les causes de rupture du joint varient suivant l'essence: faible résistance à l'eau de la ligne de soudure dans le cas du hêtre soudé, retrait et expansion du bois dans le cas du pin soudé. (7) Les extractifs du pin améliorent nettement la résistance à l'eau du joint soudé, mais à un niveau qui ne lui permet cependant pas la certification "extérieur" sans protection. En revanche, il peut être certifié "semi-extérieur" avec protection. / Wood welding is a mechanical friction process allowing the assembly of timber without any adhesives. The process consists of applying mechanical friction, under pressure, alternately to the two wood surfaces to be welded. This process can be applied to weld two flat pieces of timber, originating from the same or different tree species, and can be used in the manufacture of furniture and wood joinery. The only limitation is that the joint is not exterior-grade, but only suitable for interior joints. Exterior use, or use in an environment with varying humidity demands water resistance of the welded joints. The main objective of this thesis is to study the water resistance of the welded wood. This is complemented with special attention to non-destructive test methods such as X-ray Computed Tomography (CT-) scanning and Magnetic Resolution Imaging (MRI). The influence of welding parameters and wood properties on crack formation and crack propagation in the weldline was investigated. The influence of these parameters on weldline density and water absorption in the weldline were also studied. Investigations in this thesis are based on welded samples of Scots pine (Pinus sylvestris) of the dimensions 200 mm × 20 mm × 40 mm which were cut in the longitudinal direction of the wood grain. The tensile-shear strength of the welded Scots pine samples were determined using European standard EN 205. Different non-destructive methods such as X-ray Computed Tomography (CT-) scanning to study crack formation and propagation, and magnetic Resolution Imaging (MRI) to characterize water penetration and the distribution mechanism in welded wood were used. Solid state CPMAS 13C NMR spectrometry and X-ray microdensitometry investigations were carried out to study the mechanism of adhesion in Scots pine. These various non-destructive methods offer the advantage of non-invasive analysis and the elimination of any artifacts present due to preparation and sectioning. The most important results are summarized as follows: (1) X-ray Computed Tomography (CT-) scanning and Magnetic Resolution Imaging (MRI) are versatile research methods applicable to investigations of welded woods. (2) Water resistance of welded Scots pine can be increased using heartwood, a welding pressure of 1.3 MPa, and a welding time of 1.5 s. (3) Optimization tests showed that the tensile-shear strength of Scots pine was more sensitive to welding time changes than holding time and could be optimized to more than 9.7 MPa using 1.3 MPa welding pressure, > 3.5 s welding time, and < 60 s holding time. (4) Changing welding parameters and wood properties can increase water resistance of welded wood to some extent, but treating the weldline with certain natural and environmentally-friendly water repellents is still necessary. (5) Welded Scots pine shows unusually high water resistance and tensile-shear strength. This may be explained by there being more extractives compounds in Scots pine. (6) MRI experiments showed that the origin of the joint failure in welded beech is poor water resistance of the weldline, while swelling and shrinkage of wood are the main reasons for joint failure of welded Scots pine. (7) Extractives in Scots pine dramatically improve water resistance of the welded joint, but not to a level to classify the joint as an unprotected exterior grade. However, it can qualify as a joint for protected semi-exterior application.
|
Page generated in 0.1254 seconds