• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploration fonctionnelle in vitro des mécanismes à l'origine de l'acrodysostose sans résistance hormonale par mutation du gène de la PDE4D : comparaison avec l'acrodysostose et résistance plurihormonale (mutations du gène PRKAR1A) et la pseudo-hypoparathyroïdie 1a (mutations du gène GNAS) / In vitro functional exploration of mechanisms causing acrodysostosis without hormonal resistance by mutation of the PDE4D gene : comparison with acrodysostosis and multi-hormonal resistance (mutations of the PRKAR1A gene) and pseudo-hypoparathyroidism 1a (mutations in the GNAS gene)

Motte-Signoret, Emmanuelle 22 November 2016 (has links)
L’acrodysostose est une chondrodysplasie associant une petite taille et des anomalies des extrémités et de la face. Les mécanismes moléculaires sous-jacents ont récemment été identifiés, et deux types d’acrodysostose sont individualisés : 1) l’acrodysostose avec résistance hormonale (acroR1a), en lien avec des mutations du gène PRKAR1A, codant pour une sous-unité régulatrice de la PKA et 2) l’acrodysostose « sans » résistance hormonale (acroPDE), en lien avec des mutations du gène PDE4D, codant pour la phosphodiestérase 4D. Dans les deux cas, il existe une altération de la voie de signalisation de l’AMPc entraînant une résistance au PTHrp à l’origine du phénotype osseux des patients, similaire à celui observé dans la PHP 1a due à des mutations inactivatrices du gène GNAS, codant pour la protéine Gsα. Je me suis intéressée dans ce travail aux mécanismes cellulaires à l’origine du phénotype de l’acroPDE et pouvant expliquer ses différences phénotypiques avec l’acroR1a et la PHP1a. Ces trois pathologies offrent un outil précieux pour l’étude de la voie de signalisation des RCPG puisqu’elles sont toutes dues à un défaut génétique altérant cette voie, mais s’exprimant cliniquement de façon différente bien que proche, notamment en ce qui concerne les résistances hormonales autres que celle du PTHrp dans les chondrocytes. Dans la première partie, afin de mettre en évidence une spécificité tissulaire pouvant expliquer les différences d’expression phénotypique de ces mutations, j’ai utilisé deux modèles cellulaires humains, des fibroblastes et la lignée HEK293, et observé les effets de l’inhibition sélective de la PDE4 par du rolipram à différentes étapes de la voie de signalisation, après stimulation par deux agonistes, la PTH et la PGE2. Les résultats indiquent que l’impact du rolipram est d’autant plus important que la stimulation par l’agoniste est faible. La modulation du signal par la PDE4 dépend donc à la fois du type cellulaire et de l’intensité initiale du stimulus par l’agoniste. Dans la seconde partie, pour comparer plus directement l’effet des mutations de ces trois gènes au niveau cellulaire, j’ai réalisé une étude détaillée du phénotype des fibroblastes de témoins et de patients atteints de PHP1a, d’acroR1a et d’acroPDE, à différentes étapes de la voie de signalisation, après stimulation par la PTH et la PGE2, et en présence ou non d’inhibiteur des PDE. Il n’existe pas de différence significative dans l’expression des transcrits ou la traduction des protéines impliquées dans la voie de signalisation dans les différents groupes de fibroblastes. En revanche, l’effet de l’inhibition des PDE4 sur la quantité d’AMPc intracellulaire est plus important dans les fibroblastes mutés PDE4D, allant dans le sens de mutations activatrices. Nous n’avons pas pu mettre en évidence de différence significative dans la phosphorylation de CREB dans ce modèle. Et enfin, dans la 3ème partie, je présente la mise au point d’une technique de BRET permettant l’étude fonctionnelle des différentes mutations de PDE4D connues pour être responsables d’acroPDE. Les résultats sont en faveur d’un caractère activateur des mutations de PDE4D à l’origine d’une dégradation plus rapide d’AMPc aboutissant à une diminution de l’activité PKA. En conclusion, ces résultats concordent à montrer que les mutations de PDE4D sont activatrices, augmentant ainsi la dégradation de l’AMPc ce qui serait à l’origine des résistances hormonales. Ce phénomène est d’autant plus important dans les situations où l’augmentation d’AMPc est modeste, expliquant probablement l’absence de résistance hormonale dans certains tissus. Bien sûr, ces résultats sont à pondérer par le fait qu’il existe de nombreuses autres phosphodiestérases pouvant compenser ces phénomènes, qu’il existe une troisième voie d’utilisation de l’AMPc (Epac), et qu’il faudrait poursuivre les investigations notamment en étudiant les phénomènes de compartimentalisation de la cellule pour élucider ces mécanismes. / No abstract
2

Régulation de l'activité de récepteur alpha des oestrogènes (ERα) par l'hypoxie et le facteur MKL1 dans un modèle de cellules cancéreuses mammaires / Regulation of estrogen receptor alpha activity by hypoxia and the factor MKL1 in breast cancer cells

Jehanno, Charly 15 December 2017 (has links)
Les œstrogènes, et en particulier l’œstradiol E2, régulent un nombre considérable de fonctions physiologiques au sein de l’organisme et permettent notamment l’établissement et le maintien des fonctions reproductives chez tous les vertébrés. L’E2 agit localement dans de multiples organes cibles via l’intermédiaire de ses récepteurs : ERα et ERβ. Par son action proliférative contribuant au renouvellement de l’épithélium mammaire, l’E2 ainsi que son récepteur ERα ont été associés au développement pathologique de tumeurs mammaires. Celles-ci sont qualifiées d’hormono-dépendantes car elles répondent pour la majorité d’entre elles à l’utilisation de l’hormonothérapie visant à bloquer leur croissance. Malheureusement, on estime que 30 à 40% des tumeurs mammaires finissent par présenter une résistance aux traitements anti-oestrogéniques, par des mécanismes extrêmement complexes. Les travaux présentés dans ce manuscrit ont pour objectifs de mieux comprendre les mécanismes moléculaires et cellulaires impliqués dans le phénomène d’échappement des cellules tumorales mammaires au contrôle hormonal. Dans le cadre de cette thèse, nous nous sommes intéressés à deux facteurs capables de moduler l’activité d’ERα : l’hypoxie, qui désigne l’appauvrissement en oxygène du microenvironnement cellulaire, et la voie RhoA/MKL1 fréquemment mise en place au cours de la transition épithélio-mésenchymateuse. L’hypoxie est une caractéristique majeure des tumeurs solides, et des études lui suggèrent un rôle dans l’apparition de résistance endocrine. Nous montrons que le stress hypoxique inhibe fortement l’expression d’ERα, principalement au niveau protéique, et qu’il abolit la prolifération et la survie cellulaire induites par l’E2. L’analyse transcriptomique démontre qu’un certain nombre de gènes cibles d’ERα sont également régulés par l’hypoxie, qui peut soit réprimer (CXCL12…) ou bien augmenter leur expression (AREG…). Par ailleurs, l’analyse du cistrome d’ERα démontre une perte massive du nombre d’ERBSs (Estrogen Receptor Binding Site) par l’hypoxie, mais également une apparition d’ERBSs hypoxie-spécifiques. Nos résultats suggèrent que le fort recouvrement de régulation entre ERα et l’hypoxie puisse moduler l’efficacité des thérapies antihormonales. Enfin, l’équipe a démontré que l’activation de la voie RhoA/MKL1 provoque une forte inhibition de la fonction AF1 d’ERα. Afin de mieux appréhender les effets de cette voie de signalisation sur l’activité d’ERα, une lignée cellulaire MCF7 exprimant stablement un mutant constitutivement actif du facteur MKL1 a été générée. Nous montrons que son expression modifie profondément le contexte cellulaire en provoquant le basculement d’un phénotype luminal vers un phénotype basal-like. L’analyse transcriptomique de la réponse à l’E2 montre que le changement d’orientation cellulaire induit par MKL1 abolit toute régulation transcriptionnelle des gènes cibles d’ERα. Ce changement d’orientation cellulaire s’accompagne d’une reprogrammation massive du cistrome d’ERα avec une perte importante de ses sites de fixation à la chromatine, mais également de façon inattendue, un enrichissement en nouveaux ERBSs. Enfin, nous montrons une forte augmentation des interactions « non-génomiques » d’ERα avec des partenaires cytoplasmiques tels que PI3K, MSK1 et Src. Ces données suggèrent que dans des cellules agressives de type mésenchymal exprimant ERα, l’activité du récepteur repose majoritairement sur son action « non-génomique ». De façon intéressante, l’utilisation de l’anti-œstrogène pur ICI 182 780 n’a aucun effet inhibiteur sur ces interactions, pour lesquelles un rôle fonctionnel reste à établir. / Estrogens, and in particular estradiol E2, regulate a considerable number of physiological functions in the body and allow the establishment and maintenance of reproductive functions in all vertebrates. E2 acts locally in multiple target organs via its receptors: ERα and ERβ. By its proliferative action contributing to the renewal of the mammary epithelium, E2 as well as its ERα receptor have been associated with the pathological development of mammary tumors. These are qualified as hormone-dependent because they, for the majority of them, respond to the use of hormone therapy to block their growth. Unfortunately, it is estimated that 30-40% of mammary tumors end up with resistance to anti-estrogen treatments, through extremely complex mechanisms. The work presented in this manuscript aims to better understand the molecular and cellular mechanisms involved in the escape of mammary tumor cells to hormonal control. In this thesis, we looked at two factors that can modulate the ERα activity: hypoxia, which refers to oxygen depletion in the cellular microenvironment, and the RhoA/MKL1 pathway that is frequently activated during the epithelial-mesenchymal transition. Hypoxia is a major feature of solid tumors, and studies suggest a role in the development of endocrine resistance in breast cancer. We show that hypoxic stress strongly inhibits the expression of ERα, mainly at the protein level, and that it abolishes E2-induced cell proliferation and survival. Transcriptomic analysis shows that a certain number of ERα target genes are also regulated by hypoxia, which can either repress (CXCL12) or increase their expression (AREG ...). Moreover, the analysis of the ERα cistrome demonstrates a massive loss of the number of ERBSs (Estrogen Receptor Binding Site) by hypoxia, but also an appearance of hypoxia-specific ERBSs. Our results suggest that the strong regulatory overlap between ERα and hypoxia may modulate the efficacy of anti-hormonal therapies. Finally, the team demonstrated that the activation of the RhoA/MKL1 pathway causes a strong inhibition of the ERα AF1 function. In order to better understand the effects of this signaling pathway on ERα activity, an MCF7 cell line stably expressing a constitutively active mutant of the MKL1 factor was generated. We show that its expression profoundly modifies the cellular context by causing the switch from a luminal phenotype to a basal-like phenotype. The transcriptomic analysis of the E2 response shows that the MKL1 induced change in cell fate abolishes any transcriptional regulation of ERα target genes. This change in cellular orientation is accompanied by massive reprogramming of the ERα cistrome with a significant loss of its chromatin binding sites, but also unexpectedly, an enrichment of new ERBSs. Finally, we show a strong increase of "non-genomic" ERα interactions with cytoplasmic partners such as PI3K, MSK1 and Src. These data suggest that in aggressive mesenchymal cells expressing ERα, the receptor activity is mainly based on its "non-genomic" action. Interestingly, the use of pure anti-estrogen ICI 182 780 has no inhibitory effect on these interactions, for which a functional role remains to be established.

Page generated in 0.0695 seconds