• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local monomialization of generalized real analytic functions / Monomialisation locale de fonctions analytiques généralisées

Martín Villaverde, Rafael 15 December 2011 (has links)
Les fonctions analytiques généralisées sont définies par des séries convergentes de monômes àcoeffcients réels et exposants réels positifs. Nous étudions l'extension de la géométrie analytiqueréelle associée à ces algèbres de fonctions. Nous introduisons pour cela la notion de variétéanalytique réelle généralisée. Il s'agit de variétés topologiques à bord munies de la structure dufaisceau des fonctions analytiques réelles généralisées. Notre résultat principal est un théorèmede monomialisation locale de ces fonctions. / Generalized power series extend the notion of formal power series by considering exponents ofeach variable ranging in a well ordered set of positive real numbers. Generalized analytic functionsare defined locally by the sum of convergent generalized power series with real coe cients. Weprove a local monomialization result for these functions: they can be transformed into a monomialvia a locally finite collection of finite sequences of local blowingsup. For a convenient frameworkwhere this result can be established, we introduce the notion of generalized analytic manifoldand the correct definition of blowing-up in this category.
2

Resolution of singularities in foliated spaces / Résolution des singularités dans un espace feuilleté

Belotto Da Silva, André Ricardo 28 June 2013 (has links)
Considérons une variété régulière analytique M sur le corps réel ou complexe, un faisceau d'idéaux J défini sur M, un diviseur à croisement normaux simples E et une distribution singulière involutive Θ tangent à E.L'objectif principal de ce travail est d'obtenir une résolution des singularités du faisceau d'idéaux J qui préserve certaines ``bonnes" propriétés de la distribution singulière Θ. Plus précisément, la propriété de R-monomialité : l'existence d'intégrales premières monomiales. Ce problème est naturel dans le contexte où on doit étudier l'interaction d'une variété et d'un feuilletage et, donc, est aussi reliée au problème de la monomilisation des applications et de résolution ``quasi-lisse" des familles d'idéaux.- Le premier résultat donne une résolution globale si le faisceau d'idéaux J est invariant par la distribution singulière;- Le deuxième résultat donne une résolution globale si la distribution singulière Θ est de dimension 1 ;- Le troisième résultat donne une uniformisation locale si la distribution singulière Θ est de dimension 2.On présente aussi deux utilisations des résultats précédents. La première application concerne la résolution des singularités en famille analytique, soit pour une famille d'idéaux, soit pour une famille de champs de vecteurs. Pour la deuxième, on applique les résultats à un problème de système dynamique, motivé par une question de Mattei. / Let M be an analytic manifold over the real or complex field, J be a coherent and everywhere non-zero ideal sheaf over M, E be a reduced SNC divisor and Θ an involutive singular distribution everywhere tangent to E. The main objective of this work is to obtain a resolution of singularities for the ideal sheaf J that preserves some ``good" properties of the singular distribution Θ. More precisely, the R-monomial property : the existence of local monomial first integrals. This problem arises naturally when we study the ``interaction" between a variety and a foliation and, thus, is also related with the problem of monomialization of maps and of ``quasi-smooth" resolution of families of ideal sheaves.- The first result is a global resolution if the ideal sheaf J is invariant by the singular distribution Θ;- The second result is a global resolution if the the singular distribution Θ has leaf dimension 1;- The third result is a local uniformization if the the singular distribution Θ has leaf dimension 2;We also present two applications of the previous results. The first application concerns the resolution of singularities in families, either of ideal sheaves or vector fields. For the second application, we apply the results to a dynamical system problem motivated by a question of Mattei.
3

Schémas de Hilbert invariants et théorie classique des invariants / Invariant Hilbert Schemes and classical invariant theory

Terpereau, Ronan 05 November 2012 (has links)
Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu^{-1}(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu^{-1}(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment. / Let W be an affine variety equipped with an action of a reductive group G. The invariant Hilbert scheme is a moduli space which classifies the G-stable closed subschemes of W such that the affine algebra is the direct sum of simple G-modules with previously fixed finite multiplicities. In this thesis, we first study the invariant Hilbert scheme, denoted H. It parametrizes the GL(V)-stable closed subschemes Z of W=n1 V oplus n2 V^* such that k[Z] is isomorphic to the regular representation of GL(V) as GL(V)-module. If dim(V)<3, we show that H is a smooth variety, so that the Hilbert-Chow morphism gamma: H -> W//G is a resolution of singularities of the quotient W//G. However, if dim(V)=3, we show that H is singular. When dim(V)<3, we describe H by equations and also as the total space of a homogeneous vector bundle over the product of two Grassmannians. Then we consider the symplectic setting by letting n1=n2 and replacing W by the zero fiber of the moment map mu: W -> End(V). We study the invariant Hilbert scheme H' which parametrizes the subschemes included in mu^{-1}(0). We show that H' is always reducible, but that its main component Hp' is smooth if dim(V)<3. In this case, the Hilbert-Chow morphism is a resolution of singularities (sometimes a symplectic one) of the quotient mu^{-1}(0)//G. When dim(V)=3, we describe Hp' as the total space of a homogeneous vector bundle over a flag variety. Finally, we get similar results when we replace GL(V) by some other classical group (SL(V), SO(V), O(V), Sp(V)) acting first on W=nV, then on the zero fiber of the moment map.
4

Schémas de Hilbert invariants et théorie classique des invariants

Terpereau, Ronan 05 November 2012 (has links) (PDF)
Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu^{-1}(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu^{-1}(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment.

Page generated in 0.0996 seconds