• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification de rétropseudogènes dérivés des ARNs hY et étude de leur fonction dans l'épissage alternatif chez l'humain et recherche d'un homologue de la protéine RoBP1 chez la levure Saccharomyces cerevisiae

Noël, Jean-François January 2006 (has links)
Les ribonucléoprotéines Ro humaines sont constituées d'un des 4 ARNs hY et des protéines Ro60 et La, et probablement des protéines RoBP1, PTB et hnRNP K. Certaines maladies autoimmunes affectant les tissus conjonctifs sont caractérisées par la formation d'autoanticorps contre ces ribonucléoprotéines. Aucune fonction n'est attribuée aux RNPs Ro et leur rôle dans la pathogénèse des maladies qui sont associées aux anticorps ciblant ces RNPs reste indéfini. La protéine RoBP1 interagit spécifiquement avec les RNPs Ro contenant Ro60 et hY5.Les particularités biochimiques et immunologiques de ces RNPs Ro suggèrent une fonction particulière qui pourrait être découverte par une meilleure connaissance de la protéine RoBP1. Des travaux antérieurs tentant d'identifier l'homologue fonctionnel de RoBP1 chez la levure suggéraient l'existence de 2 gènes pouvant complémenter pour la perte de RoBP1 dans une souche de levure rendue dépendante de RoBP1. Nous avons confirmé la dépendance à RoBP 1 de cette souche. Cependant, les petites colonies sur milieu riche et l'absence de croissance sur milieu non-fermentable nous ont indiqué des déficiences respiratoires. Un rétrocroisement de cette souche avec une levure sauvage ne nous a pas permis de corriger ces déficiences. De plus, les tests de complémentation non concluants et l'absence de létalité des délétions des 2 gènes (UBC5 et CAF4) contredisent les travaux antérieurs. Donc, aucun homologue fonctionnel de RoBP1 n'est identifié chez la levure. Les gènes codants pour les ARNs hY semblent être présents en une seule copie par génome. Cependant, il existe une abondance de séquences homologues aux ARNs hY dans le génome humain.Les séquences répétées les plus représentées dans le génome proviennent des éléments transposables, dont le rétrotransposon L1. La machinerie de rétrotransposition de l'élément L1 peut être utilisée pour la mobilisation d'autres séquences, comme les éléments Alu, et cette rétrotransposition laisse des marques caractéristiques identifiables dans le génome. L'analyse approfondie des séquences hY génomiques pourrait permettre de découvrir leur origine. À l'aide d'outils bioinformatiques, nous avons identifié 966 pseudogènes dérivés des ARNs hY dispersés dans tous les chromosomes avec une préférence pour les régions riches en gènes. La conservation des séquences et la distribution génomique des pseudogènes hY sont similaires à ceux des éléments Alu et leur apparition serait survenue après la divergence des rongeurs et des primates. L'analyse des séquences nous a permis d'identifier plusieurs caractéristiques suggérant que les pseudogènes hY ont été mobilisés directement par la machinerie de rétrotransposition de L1: queue poly(A), duplications du site cible flanquant le pseudogène, et site d'insertion similaire au site consensus reconnu par l'endonucléase de l'élément L1. Nous avons identifié chez les pseudogènes hY certaines mutations ponctuelles spécifiques au niveau des sites de liaison aux protéines Ro60, La ou hnRNP K. Trois des protéines interagissant avec les RNPs Ro seraient impliquées dans l'épissage (PTB, hnRNP K et RoBP1). Des séquences homologues aux ARN hY se retrouvant dans des introns près de sites d'épissage pourraient recruter ces protéines et moduler l'épissage de l'intron. Nous avons introduit des séquences correspondant aux ARNs hY dans les introns de modèles d'épissage alternatif (hnRNP A1 et Bcl-x) pour vérifier leur impact sur l'épissage. Nous avons observé qu'une séquence hY3 en aval ou en amont de l'exon alternatif du modèle A1 favorise l'exclusion de cet exon; modulation qui est plus importante lorsque la séquence est dans l'orientation opposée au gène. Des expériences de compétition montrent cependant que cette modulation semble être indépendante de l'action d'un facteur agissant en trans . Dans certains cas, la modulation observée est atténuée par la présence dans le mélange d'épissage d'une séquence complémentaire. Contrairement au modèle A1, l'introduction de séquences hY3 introniques influence peu l'épissage in vitro et in vivo du mini-gène Bcl-x.
2

Étude du mécanisme de rétrotransposition des ARN hY dans les cellules humaines

Lamontagne, Anne-Marie January 2011 (has links)
Chez l'humain, il y a présence de quatre petits ARN Y; soit les ARN hYl, hY3, hY4 et hY5. La longueur de ces ARN varie entre 84 (hY5) à 112 (hY1) nucléotides. Ces ARN forment une longue structure tige boucle pouvant être liée par une protéine nommée Ro60. Les ribonucléoprotéines Ro (Ro RNP) résultent de la liaison de Ro60 ainsi que celle de la protéine La aux ARN hY. Ces Ro RNP sont la cible d'auto-anticorps chez des patients atteints de pathologies du tissu conjonctif, comme le lupus érythémateux systémique. Les connaissances sur le rôle de ces petits ARN non-codants sont limitées. Cela rend leur étude d'autant plus importante. Par contre, quelques évidences suggèrent leur implication dans la réplication chromosomale. Récemment, environ mille pseudogènes Y ont été découverts dans le génome humain; leur présence suggère un mécanisme de rétrotransposition. L'étude des séquences adjacentes aux pseudogènes a permis d'identifier une signature de la machinerie des Long Interspersed Nuclear Elements 1 (LINE-1), suggérant un nouvel élément mobile similaire à Alu. De plus, la majorité des pseudogènes Y présentaient des mutations précises aux sites de liaison de plusieurs protéines, dont Ro60. Cela nous a amenés à explorer les différents aspects du mécanisme de rétroposition présumé des ARN hY. Pour ce faire, nous avons adapté un essai de rétrotransposition Ll dans les cellules HeLa. Notre principale hypothèse était de vérifier si l'absence de protéines liées à l'ARN Y pouvait influencer la rétrotransposition de l'ARN en question. La méthode de détection par dénombrement de colonies s'est avérée peu profitable puisqu'elle manquait de sensibilité. Les niveaux très faibles et le taux élevé de variation entre les différents essais ne permettaient pas d'émettre des conclusions claires et précises. Par la suite, nous avons développé une seconde méthode de détection basée sur la PCR quantitative en temps réel. Il s'agit d'une nouvelle application pour l'étude des événements de rétrotransposition. Celle-ci nous a permis de démentir notre hypothèse : la perte de liaison de certaines protéines ne favoriserait pas la prise en charge de l'ARN hY par la machinerie Ll .
3

L1 retrotransposon activity : insights from genomic and molecular studies / L'activité du rétrotransposon L1 à travers des études génomiques et moléculaires

Kuciak, Monika 15 December 2011 (has links)
Les rétrotransposons L1 sont les seuls éléments transposables autonomes et actifs chez l'Homme et constituent 20% de notre ADN. Ils prolifèrent via un intermédiaire ARN et un processus couplé de réverse transcription et d'intégration, appelé rétrotransposition, et médié par une particule ribonucléoprotéique (RNP). Les L1s sautent de façon active dans les cellules germinales, les cellules souches embryonnaires et l'embryon précoce, ce qui provoque parfois de nouvelles maladies génétiques. Cependant ils sont considérés comme éteints dans la plupart des tissus somatiques. Dans le but d'explorer l'importance et les conséquences de la rétrotransposition des L1s chez l'Homme, nous avons développé une approche de cartographie des L1s actifs dans le génome humain, en combinant amplification sélective des sites d'insertion et séquençage à haut-débit. Nous avons utilisé cette stratégie afin d'obtenir la cartographie différentielle des L1s dans deux lignées cellulaires humaines apparentées. Ainsi, nous avons découvert plusieurs insertions de L1 présentes uniquement dans la lignée fille mais absente dans la lignée parentale, démontrant pour la première fois que les éléments L1 endogènes humains sont capables de mobilité dans des lignées de cellules somatiques en culture. D'autre part, afin d'éclaircir les déterminants qui dictent l'intégration des L1s, nous avons développé un test direct de réverse transcription in vitro à partir de RNP L1 natives partiellement purifiées de cellules humaines. Ceci nous a permis de montrer que la réverse transcriptase du L1 participe à la sélection du site d'insertion, ajoutant une couche additionnelle de spécificité après l'endonucléase L1. En conclusion, notre travail met en lumière la flexibilité de la machinerie des L1s, une propriété qui a certainement participé à l'efficacité de l'invasion des génomes de mammifères par ces éléments génétiques mobiles. / L1 retrotransposons are the only autonomous and active transposable elements in humans and comprise as much as 20% of our DNA. They proliferate via an RNA intermediate and a coupled reverse transcription and integration process, called retrotransposition and mediated by an L1-encoded ribonucleoprotein particle (RNP). L1s are actively jumping in germ cells, embryonic stem cells and in the early embryo, occasionally leading to de novo genetic diseases, but are considered silent in most somatic tissues. To comprehensively map active L1 elements in the human genome and to further explore the importance and consequences of L1 retrotransposition in humans, we combined selective amplification of L1 insertion sites and high-throughput sequencing. We applied this strategy to obtain a differential map of L1 insertions in two related human cultured cell lines and to question the possibility that endogenous L1 elements could be jumping in somatic cultured cells. We discovered several L1 insertions only present in the daughter cell line but absent in the parental cell line, demonstrating for the first time that retrotransposition of endogenous L1s takes place in a human somatic cell line. To get insights into the determinants of L1 integration, we have also developed a novel reverse transcription assay using partially purified native L1 RNPs. This enabled us to show that the L1 reverse transcriptase participates to insertion site selection, adding a second layer of specificity beyond the L1 endonuclease. Finally our work highlights the flexibility of the L1 machinery, which certainly participates to the efficient spreading of L1 elements within mammalian genomes.
4

La particule ribonucléoprotéique de l'élément L1 humain : spécificité de l'activité transcriptase inverse et partenaires cellulaires / The ribonucleoprotein complex of the human L1 element : specificity of the reverse transcriptase activity and cellular partners

Monot, Clément 27 September 2013 (has links)
Les éléments LINE-1 (L1) sont les seuls éléments transposables autonomes et actifs, constituant 20% de notre ADN. Ils prolifèrent via un intermédiaire ARN dans un processus appelé rétrotransposition. Les L1s encodent deux protéines, ORF1p et ORF2p, qui s’associent avec l’ARN du L1 pour former une particule ribonucléoprotéique (RNP), constituant l’intermédiaire fonctionnel de la rétrotransposition. Les L1s « sautent » activement dans les cellules germinales, les cellules souches embryonnaires et dans l’embryon précoce, conduisant occasionnellement à des maladies génétiques. Ils sont également exprimés et mobiles dans un certain nombre de cancers. Les sites d’intégration des L1s sont généralement considérés comme aléatoires, les déterminants moléculaires de leur insertion demeurant mal connus. Afin d’éclaircir ce processus, nous avons d’abord exploré les propriétés biochimiques des RNPs du L1, en mesurant leur activité transcriptase inverse in vitro sur une collection variée de substrats d’ADN. Nous avons observé que des substrats, qui diffèrent par leur séquence ou leur structure, ne sont pas tous utilisés efficacement par les RNPs du L1 pour amorcer la transcription inverse. Notre travail suggère que la spécificité et la flexibilité de l’initiation de la transcription inverse du L1 participe aux choix du site d’insertion. Dans un second temps, nous avons recherché des partenaires cellulaires de la RNP du L1 qui pourraient contribuer à la rétrotransposition et/ou la réguler, par des cribles double-hybride chez la levure. Nous avons découvert que la protéine ORF2p interagit avec un groupe de récepteurs nucléaires. Ces derniers possèdent un domaine de liaison à l’ADN qui reconnaît des séquences d’ADN spécifiques réparties dans le génome, et un domaine de liaison du ligand, qui permet d’activer la transcription des gènes cibles. Nos données suggèrent que ces facteurs participent à la rétrotransposition des L1s, possiblement en ciblant leurs RNPs dans certaines régions du génome. Dans leur ensemble, nos travaux ont contribué à améliorer notre compréhension de la relation entre éléments transposables et génome hôte, et de leur impact sur la plasticité du génome humain. / LINE-1 (L1) elements are mobile genetic elements, comprising up to 20% of the contemporary human genome, in which they are the only autonomously active element. They replicate through an RNA intermediate in a process named retrotransposition. Replication-competent L1 copies code for two proteins, ORF1p and ORF2p, that associate in cis with their own RNA to form a ribonucleoprotein complex (RNP), the functional intermediate of retrotransposition. L1s « jump » actively in germ cells, embryonic stem cells and in the early embryo, leading occasionally to genetic diseases. These elements are also expressed and mobile in a number of cancers. L1 insertion sites are generally considered as random. The molecular determinants of L1 insertion, as well as many steps of the retrotransposition cycle, remain uncertain. To get further insight in the molecular mechanisms of L1 retrotransposition, we first explored the biochemical properties of the L1 RNP, by measuring their reverse transcriptase activity in vitro on various DNA substrates. Using this approach, we observed that L1 RNPs do not equally extend DNA substrates, which differ in sequence or structure, to initiate cDNA synthesis. Our work suggests that the specificity and flexibility of L1 reverse transcription priming contribute to the choice of target sites. In a second approach, we performed yeast two-hybrid screens in order to discover cellular partners of the L1 RNP, which could contribute and/or regulate retrotransposition, We found that ORF2p interacts with a group of nuclear receptors. These proteins contain a DNA binding domain, which recognizes specific DNA sequences spread in the genome, and a ligand binding domain, driving transcriptional regulation of target genes. Our data suggest that these factors participate to L1 retrotransposition, potentially by tethering L1 RNPs to specific genomic regions. Altogether, this work has contributed to a better understanding of the relationship between mobile genetic elements and their host genome, and their impact on human genome plasticity.
5

Mécanismes moléculaires de la rétrotransposition de l'élément L1 humain / Molecular mechanisms of human L1 retrotransposition

Viollet, Sébastien 19 December 2014 (has links)
L’élément L1 (Long Interspersed Nuclear Element 1 ou L1) est le seul rétrotransposon autonome et actif connu dans notre génome, représentant 17% de celui-ci. Capable de se répliquer grâce à un intermédiaire à ARN et un mécanisme de transcription inverse initiée au site d’intégration, il encode deux protéines ORF1p et ORF2p, qui s’associent à l’ARN L1 pour former une particule ribonucléoprotéique (RNP). L’élément L1 rétrotranspose préférentiellement en cis : un L1 défectif est complémenté en trans par un élément fonctionnel de façon inefficace. Ce travail s'intéresse à deux étapes clefs du cycle réplicatif du L1 : l'assemblage de la RNP L1 en cis ou en trans afin d’explorer le mécanisme de la cis-préférence et la spécificité de l’initiation de la reverse transcription initiée. Nous avons d’abord comparé deux méthodes d’analyse de l’activité RT. Puis, nous avons montré l’importance de la complémentarité entre queue poly(A) de l’ARN L1 et site d’intégration durant l’initiation de la RT, ainsi que l’impact de mésappariements terminaux éventuels. Enfin, nous avons étudié les bases biochimiques de la cis-préférence, à travers la coexpression et la purification de deux éléments distincts étiquetés, ce qui nous a permis de suivre l'assemblage et l'activité de leurs RNPs respectives. Nos données suggèrent que ORF1p et ORF2p peuvent lier en trans l’ARN L1 de façon efficace et que la cis-préférence pourrait nécessiter des quantités limitantes de L1. / The Long Interspersed Nuclear Element 1 (LINE-1 ou L1) is the only known active and autonomous retrotransposon in the human genome and constitutes around 17% of our genomic DNA. The L1 element is able to replicate through an RNA intermediate by a mechanism called target-primed reverse transcription and encodes two proteins ORF1p and ORF2p, which associate with the L1 RNA to form a ribonucleoprotein particle (RNP). L1 preferentially retrotranspose in cis: a defective L1 can only be rescued in trans at low levels by a replication-competent copy. During this work, we focused on two essential steps of the L1 replication cycle: the assembly of the L1 RNP in cis or in trans to explore the mechanism of the cis-preference and the specificity of L1 reverse transcription priming. First, we compared two different methods to detect L1 RT activity. Then, we showed the importance of base-pairing between the poly(A) tail of the L1 RNA and the integration site to prime reverse transcription and the impact of potential mismatches. Finally, we investigated the biochemical basis of the cis-preference through the coexpression and purification of two different tagged L1 elements, which allowed us to follow the assembly and activity of their RNP. Our data suggest that binding of ORF1p and ORF2p in trans is efficient and that the cis-preference might requires limiting L1 levels.
6

L'influence du contexte génomique sur la sélection du site d'intégration par les rétrotransposons humains L1 / Influence of the genomic context on integration site selection by human L1 retrotransposons

Sultana, Tania 12 December 2016 (has links)
Les rétrotransposons L1 (Long INterspersed Element-1) sont des éléments génétiques mobiles dont l'activité contribue à la dynamique du génome humain par mutagenèse insertionnelle. Les conséquences génétiques et épigénétiques d'une nouvelle insertion, et la capacité d'un L1 à être remobilisé, sont directement liées au site d’intégration dans le génome. Aussi, l’analyse des sites d’intégration des L1s est capitale pour comprendre leur impact fonctionnel - voire pathogène -, en particulier lors de la tumorigenèse ou au cours du vieillissement, et l’évolution de notre génome. Dans ce but, nous avons induit de façon expérimentale la rétrotransposition d'un élément L1 actif plasmidique dans des cellules en culture. Puis, nous avons cartographié les insertions obtenues de novo dans le génome humain grâce à une méthode de séquençage à haut-débit, appelée ATLAS-seq. Finalement, les sites pré-intégratifs identifiés par cette approche ont été analysés en relation avec un grand jeu de données publiques regroupant les caractéristiques structurales, génétiques ou épigénétiques de ces loci. Ces expériences ont révélé que les éléments L1 s’intègrent préférentiellement dans des régions de la chromatine faiblement exprimées et renfermant des activateurs faibles. Nous avons aussi trouvé plusieurs positions chromosomiques qui constituent des points chauds d'intégrations récurrentes. Nos résultats indiquent que la distribution des insertions de L1 de novo n’est pas aléatoire, que ce soit à l’échelle chromosomique ou à plus petite échelle, et ouvrent la porte à l'identification des déterminants moléculaires qui contrôlent la distribution chromosomique des L1s dans notre génome / Retrotransposons are mobile genetic elements that employ an RNA intermediate and a reverse transcription step for their replication. Long INterspersed Elements-1 (LINE-1 or L1) form the only autonomously active retrotransposon family in humans. Although most copies are defective due to the accumulation of mutations, each individual genome contains an average of 100 retrotransposition-competent L1 copies, which contribute to the dynamics of contemporary human genomes. L1 integration sites in the host genome directly determine the genetic consequences of the integration and the fate of the integrated copy. Thus, where L1 integrates in the genome, and whether this process is random, is critical to our understanding of human genome evolution, somatic genome plasticity in cancer and aging, and host-parasite interactions. To characterize L1 insertion sites, rather than studying endogenous L1 which have been subjected to evolutionary selective pressure, we induced de novo L1 retrotransposition by transfecting a plasmid-borne active L1 element into HeLa S3 cells. Then, we mapped de novo insertions in the human genome at nucleotide resolution by a dedicated deep-sequencing approach, named ATLAS-seq. Finally, de novo insertions were examined for their proximity towards a large number of genomic features. We found that L1 preferentially integrates in the lowly-expressed and weak enhancer chromatin segments. We also detected several hotspots of recurrent L1 integration. Our results indicate that the distribution of de novo L1 insertions is non-random both at local and regional scales, and pave the way to identify potential cellular factors involved in the targeting of L1 insertions

Page generated in 0.1295 seconds