• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanismes moléculaires de la rétrotransposition de l'élément L1 humain / Molecular mechanisms of human L1 retrotransposition

Viollet, Sébastien 19 December 2014 (has links)
L’élément L1 (Long Interspersed Nuclear Element 1 ou L1) est le seul rétrotransposon autonome et actif connu dans notre génome, représentant 17% de celui-ci. Capable de se répliquer grâce à un intermédiaire à ARN et un mécanisme de transcription inverse initiée au site d’intégration, il encode deux protéines ORF1p et ORF2p, qui s’associent à l’ARN L1 pour former une particule ribonucléoprotéique (RNP). L’élément L1 rétrotranspose préférentiellement en cis : un L1 défectif est complémenté en trans par un élément fonctionnel de façon inefficace. Ce travail s'intéresse à deux étapes clefs du cycle réplicatif du L1 : l'assemblage de la RNP L1 en cis ou en trans afin d’explorer le mécanisme de la cis-préférence et la spécificité de l’initiation de la reverse transcription initiée. Nous avons d’abord comparé deux méthodes d’analyse de l’activité RT. Puis, nous avons montré l’importance de la complémentarité entre queue poly(A) de l’ARN L1 et site d’intégration durant l’initiation de la RT, ainsi que l’impact de mésappariements terminaux éventuels. Enfin, nous avons étudié les bases biochimiques de la cis-préférence, à travers la coexpression et la purification de deux éléments distincts étiquetés, ce qui nous a permis de suivre l'assemblage et l'activité de leurs RNPs respectives. Nos données suggèrent que ORF1p et ORF2p peuvent lier en trans l’ARN L1 de façon efficace et que la cis-préférence pourrait nécessiter des quantités limitantes de L1. / The Long Interspersed Nuclear Element 1 (LINE-1 ou L1) is the only known active and autonomous retrotransposon in the human genome and constitutes around 17% of our genomic DNA. The L1 element is able to replicate through an RNA intermediate by a mechanism called target-primed reverse transcription and encodes two proteins ORF1p and ORF2p, which associate with the L1 RNA to form a ribonucleoprotein particle (RNP). L1 preferentially retrotranspose in cis: a defective L1 can only be rescued in trans at low levels by a replication-competent copy. During this work, we focused on two essential steps of the L1 replication cycle: the assembly of the L1 RNP in cis or in trans to explore the mechanism of the cis-preference and the specificity of L1 reverse transcription priming. First, we compared two different methods to detect L1 RT activity. Then, we showed the importance of base-pairing between the poly(A) tail of the L1 RNA and the integration site to prime reverse transcription and the impact of potential mismatches. Finally, we investigated the biochemical basis of the cis-preference through the coexpression and purification of two different tagged L1 elements, which allowed us to follow the assembly and activity of their RNP. Our data suggest that binding of ORF1p and ORF2p in trans is efficient and that the cis-preference might requires limiting L1 levels.
2

Analyse biochimique et par spectrométrie de masse d'un complexe ribonucléoprotéique d'export du VIH-1 / Biochemical and mass spectrometry analysis of an HIV-1 ribonucleoprotein export complex

Oliva, Mizar Francesca 23 May 2017 (has links)
Une étape importante du cycle viral du virus de l'immunodéficience humaine (VIH) est l'export nucléaire de transcrits viraux incomplètement épissés, incluant le génome viral ARN. Ce processus fait intervenir la protéine virale de liaison à l'ARN Rev. Dans le noyau, Rev interagit avec les transcrits viraux non épissés et partiellement épissés en s'oligomérisant sur une séquence intronique de 350 nucléotides, appelée Element de Response à Rev (RRE). Rev recrute également le facteur d'export cellulaire CRM1 et la petite GTPase Ran pour former le complexe d'export RRE/Rev/CRM1/Ran. Connaître l'architecture 3D de ce complexe ribonucléoprotéique fournirait des informations utiles pour une meilleure compréhension de l'export des ARN du VIH incomplètement épissés. Cependant, les détails moléculaires de ce complexe sont mal connus ; en particulier, la stœchiométrie des molécules Rev et CRM1 liées au RRE est en discussion.Mon doctorat vise à étudier l'architecture du complexe RRE/Rev/CRM1/Ran. Dans le cadre de ce travail, j'ai utilisé des essais biochimiques et cellulaires pour caractériser les interactions entre CRM1 et Rev et entre Rev et RRE. La majorité de mes efforts ont porté sur l'étude de ces interactions par spectrométrie de masse (MS) en condition native, une méthode puissante pour déterminer la stœchiométrie de complexes macromoléculaires. J'ai mis en place des protocoles pour la préparation à grande échelle d'un fragment du RRE de 66 nucléotides (IIABC), portant un site de liaison Rev de haute affinité, protocoles que j'ai ensuite adaptés à l'analyse de IIABC par MS en condition native. Comme Rev a tendance à s'agréger et à précipiter en solution, j'ai également conçu une forme mutante de Rev (Rev*) permettant de contourner ces problèmes. L'analyse des complexes IIABC/Rev* par électrophorèse sur gel natif confirme l'oligomérisation de Rev* sur l'ARN. Après d'intenses optimisations, j'ai obtenu des spectres MS en condition native de haute qualité, révélant que IIABC lie jusqu'à 6 monomères Rev*. De plus, j'ai reconstitué un complexe à 4 partenaires IIABC/Rev*/CRM1/Ran et j'ai réussi à déterminer sa masse et sa stœchiométrie par MS en condition native, une tâche techniquement difficile. Des efforts supplémentaires pour analyser le RRE seul et en complexe avec Rev de type sauvage ont également généré des spectres informatifs, alors que l'analyse du complexe intact RRE/Rev/CRM1/Ran a été plus compliquée. Ces résultats illustrent les forces et les limites de la spectrométrie de masse en condition native et son potentiel pour son développement futur en tant qu'outil d'analyse des complexes de ribonucléoprotéines. / An important step in the life cycle of human immunodeficiency virus (HIV) is the nuclear export of incompletely spliced viral transcripts, including the replicated viral RNA genome. This process is mediated by the viral RNA-binding protein Rev. In the nucleus, Rev recognizes unspliced and partially spliced viral transcripts by multimerizing on a 350-nucleotide intron sequence, the Rev-response element (RRE). Rev then recruits the host cell export factor CRM1 and the small GTPase Ran to form the RRE/Rev/CRM1/Ran export complex. Knowledge of the 3D architecture of this ribonucleoprotein complex would provide important insights into how unspliced viral RNA export is achieved. However, the molecular details of this complex are poorly understood. In particular, the stoichiometry of Rev and CRM1 molecules bound to the RRE is under debate.My Ph.D. project aims to investigate the architecture of the RRE/Rev/CRM1/Ran complex. As part of this work, I used biochemical and cell-based assays to characterize the interactions between CRM1 and Rev and between Rev and the RRE. The majority of my efforts focused on investigating these interactions by native mass spectrometry (MS), a powerful method for determining the stoichiometry of macromolecular complexes. I set up protocols for the large-scale preparation of a 66-nucleotide RRE fragment (IIABC) bearing a high-affinity Rev binding site, and adapted these for compatibility with native MS analysis. Because Rev tends to aggregate and precipitate in solution, I engineered a mutant form of Rev (Rev*) to overcome this problem. Analysis of IIABC/Rev* complexes by native gel electrophoresis confirms multimerization of Rev on the RNA. After extensive optimization, I obtained high-quality native MS spectra of these complexes, revealing that IIABC binds up to 6 Rev* monomers. Furthermore, I reconstituted a 4-species complex, IIABC/Rev*/CRM1/Ran, and succeeded in determining its mass and stoichiometry by native MS – a technically challenging task. Additional efforts at analyzing the intact RRE and complexes with wild-type Rev have also yielded informative spectra, while analysis of the intact RRE/Rev/CRM1/Ran holo-complex has had more limited success. These results illustrate the strengths and limitations of native mass spectrometry and its potential for future development as a tool for analyzing ribonucleoprotein complexes.

Page generated in 0.0685 seconds