• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 16
  • 10
  • 10
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Code acquisition in advanced CDMA networks

Katz, M. (Marcos) 09 December 2002 (has links)
Abstract The present dissertation deals with initial synchronization in Code Division Multiple Access (CDMA) networks. In the first part of this thesis an extensive and up-to-date review of the literature is presented. The basic theory of code acquisition as well as different techniques and structures used to achieve the initial synchronization are discussed. A survey of the most common theoretical approaches allowing performance characterization of the acquisition process is included. The effect of noise, interference, carrier Doppler, multipath propagation, fading and data modulation on system performance are reviewed. Advanced code acquisition approaches exploiting interference suppression techniques and multiple antennas are also described. A summary of the results obtained within the area of code acquisition in CDMA networks is also embraced by this thesis. The distinctive assumption is to consider the actual variable effect of multiple access interference on the delay-domain search process, instead of the usual constant approximation. Three directions of research are followed. Models for code acquisition in quasi-synchronous and asynchronous CDMA networks are first developed and analysed. Closed-form expressions for the main performance figures of the acquisition process are derived and analysed. Results show a strong dependence of the mean acquisition time with the nature of the multiple access interference. In the second area of research the previous results are extended to consider code acquisition with a multi-branch (Rake) receiver in a multipath channel. A generic model for Rake receiver code acquisition is considered and developed, in which the synchronization takes place in two phases. The first detected path is allocated to the first finger during the initial synchronization phase, whereas the remaining fingers are successively allocated to other available paths in the postinitial synchronization phase. Performance measures for this acquisition process are also derived and analysed. Finally, based on the use of an antenna array and beamforming techniques, conventional delay-domain code acquisition is extended to the angular domain, resulting in a two-dimensional (delay-angle) search. This technique is found to be feasible, outperforming the synchronization approach exploiting a single-antenna. It is found that there exists an optimal number of antennas that minimises the mean acquisition time. Two-dimensional code acquisition is studied in a variety of scenarios, including single and multipath channels, fixed and fading channels, and with uniform and nonuniform spatial distributions of interference. Different two-dimensional search strategies are studied. A clear dependence of acquisition performance with the search strategy and the particular distribution of interference is pointed out. The performance of two-dimensional code acquisition is found to be seriously deteriorated by the presence of spatially nonuniform interference. Schemes based on search strategy and adaptive detector structures are considered and analysed to combat the performance degradation in the mentioned case. A comparative study of code acquisition exploiting multiple antennas is also presented.
12

Ultra-wideband Small Scale Channel Modeling and its Application to Receiver Design

McKinstry, David R. 29 July 2003 (has links)
Recently, ultra-wideband (UWB) technology based on the transmission of short duration pulses has gained much interest for its application to wireless communications. This thesis covers a range of topics related to the analysis of indoor UWB channels for communications and to system level design issues for UWB receivers. Measurement based UWB small scale modeling and characterization efforts as well as UWB communications system analysis and simulation are presented. Relevant background material related to UWB communications and wireless channel modeling is presented. The details of the small scale channel modeling work, including statistical characterization and potential models, are discussed. A detailed analysis of the CLEAN algorithm, which was used to process all the measurement data, is also given, and some limitations of the algorithm are presented. The significance of the channel impulse response model chosen for the simulation of UWB communications systems is also evaluated. Three traditional models are found to be useful for modeling NLOS UWB channels, but not LOS channels. A new model for LOS UWB channels is presented and shown to represent LOS channels much more accurately than the traditional models. Receiver architectures for UWB systems are also discussed. The performance of correlation receivers and energy detector receivers are compared as well as Rake diversity forms of each of these types to show tradeoffs in system complexity with performance. Interference to and by UWB signals is considered. A narrowband rejection system for UWB receivers is shown to offer significant system improvement is the presence of strong interferers. / Master of Science
13

The Impact of Signal Bandwidth on Indoor Wireless Systems in Dense Multipath Environments

Hibbard, Daniel James 01 June 2004 (has links)
Recently there has been a significant amount of interest in the area of wideband and ultra-wideband (UWB) signaling for use in indoor wireless systems. This interest is in part motivated by the notion that the use of large bandwidth signals makes systems less sensitive to the degrading effects of multipath propagation. By reducing the sensitivity to multipath, more robust and higher capacity systems can be realized. However, as signal bandwidth is increased, the complexity of a Rake receiver (or other receiver structure) required to capture the available power also increases. In addition, accurate channel estimation is required to realize this performance, which becomes increasingly difficult as energy is dispersed among more multipath components. In this thesis we quantify the channel response for six signal bandwidths ranging from continuous wave (CW) to 1 GHz transmission bandwidths. We present large scale and small scale fading statistics for both LOS and NLOS indoor channels based on an indoor measurement campaign conducted in Durham Hall at Virginia Tech. Using newly developed antenna positioning equipment we also quantify the spatial correlation of these signals. It is shown that the incremental performance gains due to reduced fading of large bandwidths level off as signals approach UWB bandwidths. Furthermore, we analyze the performance of Rake receivers for the different signal bandwidths and compare their performance for binary phase modulation (BPSK). It is shown that the receiver structure and performance is critical in realizing the reduced fading benefit of large signal bandwidths. We show practical channel estimation degrades performance more for larger bandwidths. We also demonstrate for a fixed finger Rake receiver there is an optimal signal bandwidth beyond which increased signal bandwidth produces degrading results. / Master of Science
14

Space-time Processsing for the Wideband-CDMA System

Zahid, Kazi 28 March 2001 (has links)
Deployment of antenna arrays is a very promising solution to reduce the Multiple Access Interference (MAI) from high data rate users in the Wideband Code Division Multiple Access (W-CDMA) system. Combining the antenna array with a RAKE receiver, both of which exploits multipath diversity, can significantly improve the system performance. In this research, we investigate the performance of these beamformer-RAKE receivers, also known as two-dimensional (2-D) RAKE receiver, for the reverse link of the W-CDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Two different Geometrically Based Single Bounce (GBSB) statistical channel models are considered, one, which is more suitable for array processing, and the other is conductive to RAKE combining. The performances of the 2-D RAKE receivers are evaluated in these two channel models as a function of the number of antenna elements and RAKE fingers. It is shown that, in both the cases, the 2-D RAKE receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, the output SINR expression of a 2-D RAKE receiver with the general optimum beamformer is derived. / Master of Science
15

Contributions à la diversité coopérative dans les systèmes ULB à accès multiple / Contributions to cooperative dIversity in multiple access UWB systems

Issa, Yamen 02 December 2013 (has links)
Ce travail s’intéresse aux transmissions ultralarge bande (ULB) dans les réseaux sans fils. La diversité spatiale est introduite par l’utilisation du système multiple-input multiple-output (MIMO) comme une technique efficace pour lutter contre l’évanouissement dû aux trajets multiples dans les communications sans fils. Mais, souvent l’intégration d’antennes multiples au niveau de l’émetteur ou du récepteur est coûteuse. Comme alternative, nous proposons d’utiliser la diversité coopérative qui garantit des gains de diversité spatiale en exploitant les techniques MIMO traditionnelles sans avoir besoin d’antennes multiples. L’objectif est d’introduire la diversité coopérative aux systèmes de transmission ULB. Nous considérons deux techniques d’accès multiple avec des schémas de modulation différents (time hopping pulse position modulation TH-PPM et direct sequence binary phase shift keying DSBPSK) avec le protocole de coopération decode-and-forward (DF). Nous utilisons le récepteur Rake afin d’exploiter la diversité de trajet multiple et analysons les statistiques de variable de décision à la sortie de ce récepteur. Nous présentons des résultats de simulation de la performance en termes de taux d’erreur binaire (TER) du système étudié sous différents canaux UWB compte tenu de la norme IEEE 802.15.4a. Ces résultats montrent que la coopération avec des relais améliore significativement les performances de transmission ULB, et que le gain de diversité augmente proportionnellement avec le nombre de relais. En présence d’IAM, la performance du système se dégrade de manière significative, mais l’avantage de la coopération est encore modérément efficace. La performance dans ce cas est limitée en termes de diversité achevée parce que le canal entre la source et le relais en présence d’IAM devient moins favorable. C’est pourquoi nous proposons d’utiliser la technique de sélection d’antenne au relais afin d’améliorer la fiabilité du canal source-relais. Cette solution permet d’améliorer la performance grâce au gain de la diversité d’antennes multiples disponibles au relais toute en n’utilisant qu’une seule chaîne radiofréquence (RF), qui conduit à une réduction des coûts et de la complexité. / This work focuses on the ultra wideband (UWB) transmission in wireless networks. Spatial diversity is introduced by the use of multiple-input multiple-output (MIMO) system as an effective technique to overcome multipath fading in wireless communications. But the integration of multiple antennas at the transmitter or receiver is often costly. As an alternative, we propose to use the cooperative diversity that provides spatial diversity gains by exploiting the traditional MIMO techniques without the need for multiple antennas. The objective is to introduce cooperative diversity to UWB transmission systems. We consider two multiple access techniques with different modulation schemes (time hopping pulse position modulation TH-PPM and direct sequence binary Phase Shift Keying DS-BPSK) with the cooperation protocol decode-and-forward (DF). We use the Rake receiver to exploit multipath diversity and analyze the decision variable statistics at the output of the receiver. We present simulation results of the BER performance of the proposed system under different UWB channel given the IEEE 802.15.4a standard. Our results show that the cooperation with the relay significantly improves the performance of UWB transmission, and that the diversity gain increases with the number of relays. In the presence of MAI, the overall system performance degrades significantly, but the benefit of cooperation is still moderately effective. The performance in this case is limited in terms of attainable diversity that the source-relay link becomes worse when MAI is present. That is why we propose to use antenna selection at the relay receiver in order to improve the reliability of the source-relay link. This solution is shown to improve the performance by exploiting the diversity of the available antennas at the relay, while using a single Radio Frequency (RF) chains. This leads to reduced cost and complexity.
16

Blind Adaptive DS-CDMA Receivers with Sliding Window Constant Modulus GSC-RLS Algorithm Based on Min/Max Criterion for Time-Variant Channels

Chang, Shih-chi 26 July 2006 (has links)
The code division multiple access (CDMA) system implemented by the direct-sequence (DS) spread spectrum (SS) technique is one of the most promising multiplexing technologies for wireless communications services. The SS communication adopts a technique of using much wider bandwidth necessary to transmit the information over the channel. In the DS-CDMA system, due to the inherent structure interference, referred to as the multiple access interference (MAI), the system performance might degrade. Next, for DS-CDMA systems over frequency-selective fading channels, the effect of inter symbol interference (ISI) will exist, such that a multiuser RAKE receiver has to be employed to combat the ISI as well as MAI. Since, in practical wireless communication environment, there may have several communication systems operated in the same area at the same time. In this thesis, we consider the environment of DS-CDMA systems, where the asynchronous narrow band interference (NBI) due to other systems is joined suddenly to the CDMA system. In general, when a system works in a stable state with adaptive detectors, a suddenly joined NBI signal will cause the system performance to be crash down. Under such circumstance, the existing conventional adaptive RAKE detectors may not be able to track well for the rapidly sudden changing NBI associated with the problems of ISI and MAI. It is known that the adaptive filtering algorithms, based on the sliding window linear constrained recursive least squares (SW LC-RLS), is very attractive to a violent changing environment. The main concern of this thesis is to propose a novel sliding window constant modulus RLS (SW CM-RLS) algorithm, based on the Min/max criterion, to deal with the NBI for DS-CDMA system over multipath channels. For simplicity and having less system complexity the generalized side-lobe canceller (GSC) structure is employed, and is referred to as the SW CM-GSC-RLS algorithm. The aim of the SW CM-GSC-RLS algorithm is used to alleviate the effect of NBI. It has the advantages of having faster convergence property and tracking ability, and can be applied to the environment in which the NBI is suddenly joined to the system under the effect of channel mismatch to achieve desired performance. At the end of this thesis, we extend the idea of the proposed algorithm to the space-time DS-CDMA RAKE receiver, in which the adaptive beamformer with temporal domain DS-CDMA receiver is employed. Via computer simulation results, we show that our new proposed schemes outperform the conventional CM GSC-RLS algorithm as well as the GSC-RLS algorithm (the so-called LCMV approach), in terms of mean square error of estimating channel impulse response, output signal to interference plus noise ratio and bit-error-rate.
17

Performance Evaluation of DS/CDMA Communications Systems Modulated with π/2-shift BPSK over Multipath Rayleigh Fading Channels

Galib, M.M.Asadullah, Yamazato, Takaya, Katayama, Masaaki, Ogawa, Akira 11 1900 (has links)
No description available.
18

Adaptive Linearly Constrained Constant Modulus Conjugate Gradient Algorithm with Applications to Multiuser DS-CDMA Detector for Multipath Fading Channel

Wang, Sheng-Meng 04 July 2003 (has links)
The direct-sequence code division multiple access (DS-CDMA) is one of the significant techniques for wireless communication systems with multiple simultaneous transmissions. The main concern of this thesis is to propose a new linearly constrained constant modulus modified conjugate gradient (LCCM-MCG) adaptive filtering algorithm to deal with problem of channel mismatch associated with the multiple access interference (MAI) in DS-CDMA system over multipath fading channel. In fact, the adaptive filtering algorithm based on the CM criterion is known to be very attractive for the case when the channel parameters are not estimated perfectly. The proposed LCCM-MCG algorithm is derived based on the so-called generalized sidelobe canceller (GSC). It has the advantage of having better stability and less computational complexity compared with conventional recursive least-squares (RLS) algorithm, and can be used to achieve desired performance for multiuser RAKE receiver. Moreover, with the MCG algorithm it requires only one recursive iteration per incoming sample data for updating the weight vector, but still maintains performance comparable to the RLS algorithm. From computer simulation results, we show that the proposed LCCM-MCG algorithm has fast convergence rate and could be used to circumvent the effect due to channel mismatch. Also, the performance, in terms of bit error rate (BER), is quite close to the LCCM-RLS algorithm suggested in [18], and is superior to the stochastic gradient descent (SGD) algorithm proposed in [7].
19

Analog and Digital Approaches to UWB Narrowband Interference Cancellation

Omid, Abedi 02 October 2012 (has links)
Ultra wide band (UWB) is an extremely promising wireless technology for researchers and industrials. One of the most interesting is its high data rate and fading robustness due to selective frequency fading. However, beside such advantages, UWB system performance is highly affected by existing narrowband interference (NBI), undesired UWB signals and tone/multi-tone noises. For this reason, research about NBI cancellation is still a challenge to improve the system performance vs. receiver complexity, power consumption, linearity, etc. In this work, the two major receiver sections, i.e., analog (radiofrequency or RF) and digital (digital signal processing or DSP), were considered and new techniques proposed to reduce circuit complexity and power consumption, while improving signal parameters. In the RF section, different multiband UWB low-noise amplifier key design parameters were investigated like circuit configuration, input matching and desired/undesired frequency band filtering, highlighting the most suitable filtering package for efficient UWB NBI cancellation. In the DSP section, due to pulse transmitter signals, different issues like modulation type and level, pulse variety, shape and color noise/tone noise assumptions, were addressed for efficient NBI cancelation. A comparison was performed in terms of bit-error rate, signal-to-interference ratio, signal-to-noise ratio, and channel capacity to highlight the most suitable parameters for efficient DSP design. The optimum number of filters that allows the filter bandwidth to be reduced by following the required low sampling rate and thus improving the system bit error rate was also investigated.
20

Analog and Digital Approaches to UWB Narrowband Interference Cancellation

Omid, Abedi 02 October 2012 (has links)
Ultra wide band (UWB) is an extremely promising wireless technology for researchers and industrials. One of the most interesting is its high data rate and fading robustness due to selective frequency fading. However, beside such advantages, UWB system performance is highly affected by existing narrowband interference (NBI), undesired UWB signals and tone/multi-tone noises. For this reason, research about NBI cancellation is still a challenge to improve the system performance vs. receiver complexity, power consumption, linearity, etc. In this work, the two major receiver sections, i.e., analog (radiofrequency or RF) and digital (digital signal processing or DSP), were considered and new techniques proposed to reduce circuit complexity and power consumption, while improving signal parameters. In the RF section, different multiband UWB low-noise amplifier key design parameters were investigated like circuit configuration, input matching and desired/undesired frequency band filtering, highlighting the most suitable filtering package for efficient UWB NBI cancellation. In the DSP section, due to pulse transmitter signals, different issues like modulation type and level, pulse variety, shape and color noise/tone noise assumptions, were addressed for efficient NBI cancelation. A comparison was performed in terms of bit-error rate, signal-to-interference ratio, signal-to-noise ratio, and channel capacity to highlight the most suitable parameters for efficient DSP design. The optimum number of filters that allows the filter bandwidth to be reduced by following the required low sampling rate and thus improving the system bit error rate was also investigated.

Page generated in 0.0636 seconds