• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 60
  • 14
  • 11
  • 7
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 273
  • 104
  • 94
  • 92
  • 72
  • 62
  • 51
  • 49
  • 48
  • 44
  • 37
  • 31
  • 31
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Levantamento de Curvas de EficiÃncia de Aerogeradores de 3m de DiÃmetro Utilizando Modelos de TurbulÃncia Rans de Uma e Duas EquaÃÃes com ComparaÃÃo Experimental / SURVEY OF EFFICIENCY CURVES OF A 3M DIAMETER WIND TURBINE USING ONE AND TWO EQUATIONS RANS TURBULENCE MODELS WITH EXPERIMENTAL COMPARISON

Francisco Olimpio Moura Carneiro 28 February 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Realizou-se o levantamento de curvas de eficiÃncia utilizando odelos numÃricos RANS de uma e duas equaÃÃes para um erogerador com 3m de diÃmetro, utilizando pÃs projetadas para operar em diferentes condiÃÃes de λ com perfis NACA 0012, 4412 e 6412. A parametrizaÃÃo da geometria da malha para a dimensÃo do rotor, juntamente com a parametrizaÃÃo do refinamento frente à capacidade dos modelos RANS obteve a independÃncia da malha à soluÃÃo. Posteriormente a anÃlise numÃrica realizou a comparaÃÃo do melhor resultado â pà projetada λ=6 com o perfil NACA 6412 â com dados experimentais. O aparato experimental foi capaz de coletar dados de rotaÃÃo e torque do rotor simultaneamente com a mediÃÃo da velocidade do vento, no qual foi obtido um valor mÃximo de eficiÃncia de aproximadamente 25% e uma faixa de operaÃÃo limitada a λ=6. Conclui-se que os modelos fornecem boa precisÃo em predizer a faixa operacional de λ, no entanto os valores de Cp foram subestimados. O modelo k-ω SST apresentou o melhor resultados dentre todos. / A survey was conducted, consisting of efficiency curves applying RANS turbulence numerical models of one and two equations for a wind turbine with a diameter of 3m, using blades designed to operate under different λ with NACA 0012, 4412 and 6412 profiles. The parameterization of the mesh geometry to the size of the rotor, together with the parameterization of the refinement level compared to the ability of RANS models reached independence from the grid to the solution. Later, a numerical analysis was performed to compare the best result â a blade designed to operate under λ = 6 with the NACA 6412 profile - against experimental data. The experimental apparatus was able to collect data rotation and torque of the rotor simultaneously with the measurement of wind velocity, which obtained a maximum efficiency of approximately 25% and an operating range limited to λ = 6. It can be concluded that the models provide good accuracy in predicting the operating range of λ, however the values of Cp were underestimated. The k-ω SST model showed the best results among all.
122

Analyse physique et simulations numériques avancées des écoulements de jonction sur les avions / Physical analysis and advanced numerical simulations of junction flows

Bordji, Mehdi Mokhtar Paul 09 October 2015 (has links)
Le décollement de coin est un phénomène pouvant apparaître sur les avions au niveau par exemple de la jonction voilure/fuselage. Cela dégrade les performances de l'appareil. Considérant le peu de connaissances relatives à ce sujet, les avionneurs choisissent généralement des modifications empiriques pour y faire face. Cette thèse a consisté à étudier la dynamique d'un écoulement de jonction simplifié caractérisé par un décollement de coin modéré, et à évaluer des méthodes numériques couramment employées dans l'industrie pour la prévision de ces écoulements. Les travaux ont débuté avec une synthèse bibliographique. Les phénomènes présents au sein d'un écoulement de jonction simplifié ont été détaillés et les trois principaux sont le tourbillon en fer à cheval, le tourbillon de coin et le décollement de coin. Ensuite, à l'aide de l'approche numérique et de données expérimentales, il a été montré que le décollement de coin modifiait significativement le champ turbulent et que sa dynamique était apparentée à celle du tourbillon en fer à cheval. La comparaison de différents modèles de turbulence a confirmé que l'anisotropie de l'écoulement de coin devait être prise en compte dans la modélisation pour générer des simulations numériques comparables aux observations faites en soufflerie. L'étude du décollement de coin doit encore être poursuivie sur d'autres configurations pour permettre une éventuelle généralisation de ces résultats et les compléter. L'approche numérique doit aussi être améliorée afin de pourvoir à la complexification des situations, et l'utilisation de la ZDES mode 3 permettrait également de progresser dans la compréhension physique des écoulements de jonction. / Corner flow separation may occur on airplanes at the wing/fuselage junction for instance. Airplanes performances are then likely to be reduced. This issue is still not thoroughly understood and therefore, many wind-tunnel and flight tests are carried out in order to prevent the occurrence of this phenomenon. This thesis has consisted in studying the dynamics of a simplified junction flow characterized by the presence of a mild corner separation, and in investigating some of the standard CFD methods used in the industry for those kind of flows. First, a literature review showed that the main features of junction flows are the horseshoe vortex, the corner vortex and the corner separation. Thereafter, through the use of numerical and experimental data, it has been shown that the corner separation significantly influenced the turbulent field and its unsteady behavior was linked to the horseshoe vortex one. Comparisons between standard and advanced turbulence models have confirmed that second order closures are needed to accurately predict corner separations. Other juncture flows applications can still be further investigated in order to broaden the application spectrum of the present results. The understanding of the physics of juncture flows may also be improved, for instance using eddy resolving simulations such as ZDES mode 3. Robustness and accuracy of the advanced turbulent closures should be increased to allow reliable juncture flow computation at early design stages.
123

Survivability of wave energy converter and mooring coupled system using CFD

Ransley, Edward Jack January 2015 (has links)
This thesis discusses the development of a Numerical Wave Tank (NWT) capable of describing the coupled behaviour of Wave Energy Converters (WECs) and their moorings under extreme wave loading. The NWT utilises the open-source Computational Fluid Dynamics (CFD) software OpenFOAM(R) to solve the fully nonlinear, incompressible, Reynolds-Averaged Navier-Stokes (RANS) equations for air and water using the Finite Volume Method (FVM) and a Volume of Fluid (VOF) treatment of the interface. A method for numerically generating extreme waves is devised, based on the dispersively-focused NewWave theory and using the additional toolbox waves2Foam. A parametric study of the required mesh resolution shows that steeper waves require finer grids for mesh independence. Surface elevation results for wave-only cases closely match those from experiments, although an improved definition of the flow properties is required to generate very steep focused waves. Predictions of extreme wave run-up and pressure on the front of a fixed truncated cylinder compare well with physical measurements; the numerical solution successfully predicts the secondary loading cycle associated with the nonlinear ringing effect and shows a nonlinear relationship between incident crest height and horizontal load. With near perfect agreement during an extreme wave event, the reproduction of the six degree of freedom (6DOF) motion and load in the linearly-elastic mooring of a hemispherical-bottomed buoy significantly improves on similar studies from the literature. Uniquely, this study compares simulations of two existing WEC designs with scale-model tank tests. For the Wavestar machine, a point-absorber constrained to pitch motion only, results show good agreement with physical measurements of pressure, force and float motion in regular waves, although the solution in the wake region requires improvement. Adding bespoke functionality, a point-absorber designed by Seabased AB, consisting of a moored float and Power Take-Off (PTO) with limited stroke length, translator and endstop, is modelled in large regular waves. This represents a level of complexity not previously attempted in CFD and the 6DOF float motion and load in the mooring compare well with experiments. In conclusion, the computational tool developed here is capable of reliably predicting the behaviour of WEC systems during extreme wave events and, with some additional parameterisation, could be used to assess the survivability of WEC systems at full-scale before going to the expense of deployment at sea.
124

Data-Driven Adaptive Reynolds-Averaged Navier-Stokes <em>k - ω</em> Models for Turbulent Flow-Field Simulations

Li, Zhiyong 01 January 2017 (has links)
The data-driven adaptive algorithms are explored as a means of increasing the accuracy of Reynolds-averaged turbulence models. This dissertation presents two new data-driven adaptive computational models for simulating turbulent flow, where partial-but-incomplete measurement data is available. These models automatically adjust (i.e., adapts) the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k-ω turbulence equations to improve agreement between the simulated flow and a set of prescribed measurement data. The first approach is the data-driven adaptive RANS k-ω (D-DARK) model. It is validated with three canonical flow geometries: pipe flow, the backward-facing step, and flow around an airfoil. For all 3 test cases, the D-DARK model improves agreement with experimental data in comparison to the results from a non-adaptive RANS k-ω model that uses standard values of the closure coefficients. The second approach is the Retrospective Cost Adaptation (RCA) k-ω model. The key enabling technology is that of retrospective cost adaptation, which was developed for real-time adaptive control technology, but is used in this work for data-driven model adaptation. The algorithm conducts an optimization, which seeks to minimize the surrogate performance, and by extension the real flow-field error. The advantage of the RCA approach over the D-DARK approach is that it is capable of adapting to unsteady measurements. The RCA-RANS k-ω model is verified with a statistically steady test case (pipe flow) as well as two unsteady test cases: vortex shedding from a surface-mounted cube and flow around a square cylinder. The RCA-RANS k-ω model effectively adapts to both averaged steady and unsteady measurement data.
125

Analyse de sensibilité pour la simulation numérique des écoulements compressibles en aérodynamique externe / Sensitivity analysis for numerical simulation of compressible flows in external aerodynamics

Resmini, Andrea 11 December 2015 (has links)
L'analyse de sensibilité pour la simulation numérique des écoulements compressibles en aérodynamique externe par rapport à la discrétisation de maillage et aux incertitudes liées à des paramètres d'entrées du modèle a été traitée 1- par le moyen des méthodes adjointes pour le calcul de gradient et 2- par approximations stochastiques non-intrusives basées sur des grilles creuses. 1- Une méthode d'adaptation de maillages goal-oriented basée sur les dérivées totales des fonctions aérodynamiques d'intérêt par rapport aux nœuds du maillage a été introduite sous une forme améliorée. La méthode s'applique au cadre de volumes finis pour des écoulements RANS pour des maillages mono-bloc et multi-bloc structurés. Des applications 2D pour des écoulements transsoniques ainsi que subsonique détaché atour d'un profil pour l'estimation du coefficient de traînée sont présentées. L'apport de la méthode proposée est vérifié. 2- Les méthodes du polynôme de chaos généralisé sous forme pseudospectrale creuse et de la collocation stochastique construite sur des grilles creuses isotropes et anisotropes sont examinées. Les maillages anisotropes sont obtenus par le biais d'une méthode adaptive basée sur l'analyse de sensibilité globale. L'efficacité des ces approximations est testée avec des fonctions test et des écoulements aérodynamiques visqueux autour d'un profil en présence d'incertitudes géométriques et opérationnelles. L'intégration des méthodes et aboutissements 1- et 2- dans une approche couplée permettrait de contrôler de façon équilibrée l'erreur déterministe/stochastique goal-oriented. / Sensitivity analysis for the numerical simulation of external aerodynamics compressible flows with respect to the mesh discretization and to the model input parametric uncertainty has been addressed respectively 1- through adjoint-based gradient computation techniques and 2- through non-intrusive stochastic approximation methods based on sparse grids. 1- An enhanced goal-oriented mesh adaptation method based on aerodynamic functional total derivatives with respect to mesh coordinates in a RANS finite-volume mono-block and non-matching multi-block structured grid framework is introduced. Applications to 2D RANS flow about an airfoil in transonic and detached subsonic conditions for the drag coefficient estimation are presented. The asset of the proposed method is patent. 2- The generalized Polynomial Chaos in its sparse pseudospectral form and stochastic collocation methods based on both isotropic and dimension-adapted sparse grids obtained through an improved dimension-adaptivity method driven by global sensitivity analysis are considered. The stochastic approximations efficiency is assessed on multi-variate test functions and airfoil viscous aerodynamics simulation in the presence of geometrical and operational uncertainties. Integration of achievements 1- and 2- into a coupled approach in future work will pave the way for a well-balanced goal-oriented deterministic/stochastic error control.
126

Improvement of RANS Forest Model via Closure Coefficient Modification

DeSena, Geoffrey January 2017 (has links)
As wind farms continue to take up more land throughout Northern Europe, developers are looking to sparsely populated areas, particularly in northern Fennoscandia, which hosts strong winds but also mixed and patchy forests over complex terrain. The complexity makes wind resource assessments difficult, raising uncertainty and therefore cost. Computational fluid dynamics (CFD) has the potential to increase the accuracy and reliability of wind models, but the most common form of commercial CFD modeling, Reynolds averaged Navier-Stokes (RANS), makes limiting assumptions about the effect of the forest on the wind. The wind resource assessment and energy estimation tool WindSim® , developed by WindSim AS, utilizes a porous medium model of a homogeneous forest with the influence of the forest on the airflow as a drag force term in the momentum equations. This method has provided reliable wind speed results but has been less reliable in estimating turbulence characteristics. The measure we evaluate in this study is turbulence intensity (TI). In this investigation, we make two types of modifications to the model and evaluate their impact on the TI estimates by using a benchmark data set collected by Meroney [1]. The first method is a variable profile of leaf area index (LAI) to represent the physical shape of the forest more accurately, and the second is a series of modifications to the closure coefficients in the turbulence transport equations. These modifications focus on the work of Lopes et al. [2], who used a large eddy simulation (LES) model to show that the turbulence production terms originally proposed by Green [3], expanded upon by Sanz [4], and widely used in the industry are unnecessary. Our investigations found that the implementation of a variable LAI profile has a small but non-negligible effect and that the elimination of the production terms from the turbulence transport equations does lead to a significant reduction in TI immediately above the forest. Both methods have minor effects on wind speed estimates, but the modification of closure coefficients has a much more significant impact on the TI. The coefficients proposed by Lopes et al. [2] drastically reduce TI estimates, but the model is still unable to reflect the Meroney data throughout the forest. Continued modification to new closure coefficients in combination with a variable forest LAI and other modifications such as a limited length scale may lead to significant improvement in TI estimates in future models, but these modifications must be compared against real-world data to ensure their applicability.
127

Flame turbulence interaction in premixed turbulent combustion

Ahmed, Umair January 2014 (has links)
No description available.
128

Laminar kinetic energy modelling for improved laminar-turbulent transition prediction

Turner, Clare Ruth January 2012 (has links)
This thesis considers the advantages of incorporating laminar kinetic energy modelling into turbulence modelling, in order to predict laminar-turbulent transition. The final aim is to implement an improved transition model into the industrial Finite-Volume code, Code Saturne. The literature review suggests that in order for a RANS-based model to predict transition accurately, modelling of complex, anisotropic phenomena is necessary. The Walters-Cokljat model is shown to compare very well to other transition modelling methods, including correlation-based modelling. The Walters-Cokljat model is a single-point RANS-based model that solves an additional transport equation for laminar kinetic energy. This transition model is especially desirable from an industrial stand-point, due to its single-point RANS basis, with only 3 transport equations. Although this method shows great promise as an industrial tool for transition prediction, results presented here show that there are aspects of the model that require modification. The definition of effective length-scale and the method of accounting for the effects of shear sheltering are the two main areas for consideration. The current definition of effective length-scale is found to be inappropriate for flows with large free-stream length-scales, which are common-place in turbomachinery applications. Another phenomenon commonly found in turbomachinery is separation-induced transition; however, the current function for shear sheltering effects inhibits transition when turbulence intensity is not the forcing factor. Additionally, when reviewed analytically, the definition and placement of the shear sheltering function does not match the observations of Jacobs and Durbin. Alternatives for the definitions of the effective length-scale and the shear sheltering function are proposed. The individual proposals are tested, and steps towards a full working implementation are documented.
129

Improved fire modelling

Assad, Mahmoud Abdulatif January 2014 (has links)
This thesis describes the development and validation of a modified eddy viscosity model to take into account the misalignment between stress a_{ij} and strain S_{ij} fields for reacting flow. The stress-strain misalignment is quantified by introducing a C_{as}=-a_{ij}S_{ij} /\sqrt{2S_{ij}S_{ij}} parameter. A new transport equation for C_{as} was derived from a full Reynolds stress model (RSM). The C_{as} transport equation was coupled to a standard EVM model (e.g. k-\omega SST) to form three equations model. This model is a new version of the SST-C_{as} model introduced by Revell (Revell2006), to incorporate buoyancy and combustion effects for buoyant reacting flow (e.g. fire). The performance of the proposed model was initially investigated via non-reacting buoyant plumes with different level of unsteadiness. The buoyant plumes were also simulated using different turbulence models and the results were compared to proposed model and experimental data. The model shows significant improvements for velocity and scalar profiles in region closed to plume centreline compared to the original SST model. The SST-C_{as} model was then applied for a real fire test case (Steckler room), and the results were compared to experimental data and results of RSM models. The SST-C_{as} model generally yields better than classical EVM models and reduces the gap between the RSM and EVM prediction with 25-30\% additional computational expenses. This work is still under development and validation for reacting flows, further work is going on to include the turbulence combustion interaction and validate it with DNS data.
130

A comparative study of Reynolds-averaged Navier-stokes and semi-empirical thermal solutions of a gas turbine nozzle guide vane

Botha, Marius 22 June 2009 (has links)
In a typical modern gas turbine engine, the nozzle guide vanes (NGVs) endure the highest operating temperatures. There exists a great drive in the turbine industry to increase the turbine inlet temperatures leading to higher thermal efficiency. This has led to a drive to increase turbine vane- and blade-cooling. Numerical modelling has to a large degree replaced empirical codes and models as the main research tool regarding simulation of blade-cooling. Outdated empirical solvers have made way for commercial CFD solvers such as FLUENT, a Reynolds-averaged Navier-Stokes (RANS) solver. One such empirical solver, TACT1, has until recently still proved to yield acceptable results. A comparative study has been done using the T56 NGV blade to establish the differences, advantages and disadvantages of these 2 codes. The engine and subsequent NGV blade were analysed using NREC, STAN5, LOSS3D and TACT1. RANS simulations were found to be computationally expensive. TACT1 yielded acceptable results compared with computational cost. For modern-day designers, RANS would be the preferred tool. / Dissertation (MEng)--University of Pretoria, 2009. / Mechanical and Aeronautical Engineering / unrestricted

Page generated in 0.0991 seconds