• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 60
  • 14
  • 11
  • 7
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 273
  • 104
  • 94
  • 92
  • 72
  • 62
  • 51
  • 49
  • 48
  • 44
  • 37
  • 31
  • 31
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Sifflement de diaphragmes en conduit soumis à un écoulement subsonique turbulent

Lacombe, Romain 16 March 2011 (has links) (PDF)
Les diaphragmes utilisés comme organes de perte de charge à l'intérieur des tuyauteries de centrales électriques ont été mis en cause dans la création de sifflement. Les conséquences de ces phénomènes sont des niveaux de bruit et de vibration pouvant dépasser les valeurs admissibles. L'objectif de la thèse est d'étudier le sifflement sur la base d'expérimentations et de calculs numériques afin de proposer des outils de compréhension et de prédiction. Un résultat de la thèse correspond à l'identification expérimentale et numérique des conditions d'amplification acoustique au niveau de diaphragmes, phénomène nécessaire au sifflement. Les expériences montrent que les plages de sifflement, exprimées sous la forme d'un nombre de Strouhal fonction de l'épaisseur du diaphragme et de la vitesse dans l'orifice, s'étendent de 0,2 à 0,4 et de 0,7 à 0,9 et sont indépendantes du nombre de Reynolds. Le potentiel de sifflement de diaphragmes est également caractérisé à l'aide de simulations numériques. Deux approches sont utilisées avec des calculs U-RANS incompressibles et des simulations LES compressibles. Il apparaît que la simulation numérique permet de reproduire l'effet d'amplification acoustique à l'origine du sifflement, pour des pas de discrétisation spatial au coin amont de l'orifice suffisamment petit. Un autre résultat de la thèse est la définition des paramètres contrôlant les caractéristiques du sifflement en présence de réflexions acoustiques. Une analyse de stabilité linéaire prédit l'apparition d'un sifflement et sa fréquence. L'amplitude de sifflement est maximum pour un nombre de Strouhal autour de 0,25 et augmente avec le taux de réflexion autour du diaphragme.
102

Simulation numérique du tremblement transsonique et optimisation de formes

Alfano, David 25 June 2007 (has links) (PDF)
Dans la mesure où le tremblement transsonique limite le domaine de vol des aéronefs, sa prédiction à moindre coût et son contrôle sont d'intérêt crucial pour les avionneurs. Nous proposons donc dans ce travail d'une part d'améliorer le calcul des écoulements transsoniques instationnaires typiques du tremblement et d'autre part d'évaluer une démarche de contrôle de ce phénomène. Le présent travail inclut un état de l'art sur le tremblement transsonique, une présentation des méthodes employées ainsi que des travaux de validation réalisés. Compte tenu des limitations de la modélisation statistique de la turbulence classique, l'utilisation de modélisations dites hybrides (PANS et DES) est alors explorée pour le calcul du tremblement transsonique sur profils supercritiques ; ces techniques permettent de reproduire numériquement avec une précision satisfaisante les phénomènes observés expérimentalement. Enfin, une démarche originale d'optimisation de formes est proposée afin de diminuer l'intensité ou de repousser l'apparition du tremblement transsonique sur profils d'ailes. Les cas traités (profils classique ou supercritique) ainsi que la démarche multi-objectifs adoptée permettent d'élaborer une méthodologie efficace et systématique d'obtention de formes plus performantes vis-à-vis du tremblement.
103

Advanced CFD methods for wind turbine analysis

Lynch, Charles Eric 19 January 2011 (has links)
Horizontal-axis wind turbines operate in a complex, inherently unsteady aerodynamic environment. The flow over the blades is dominated by 3-D effects, particularly during stall, which is accompanied by massive flow separation and vortex shedding. There is always bluff-body shedding from the turbine nacelle and support structure which interacts with the rotor wake. In addition, the high aspect ratios of wind turbine blades make them very flexible, leading to substantial aeroelastic deformation of the blades, altering the aerodynamics. Finally, when situated in a wind farm, turbines must operate in the unsteady wake of upstream neighbors. Though computational fluid dynamics (CFD) has made significant inroads as a research tool, simple, inexpensive methods, such as blade element momentum theory, are still the workhorses in wind turbine design and aeroelasticity applications. These methods are unable to accurately predict rotor loads near the edges of the operating envelope. In this work, a range of unstructured grid CFD techniques for predicting wind turbine loads and aeroelasticity has been developed and applied to the NREL Unsteady Aerodynamics Experiment Phase VI rotor. First, a kd-tree based nearest neighbor search algorithm was used to improve the computational efficiency of an approximate unsteady actuator blade method. This method was then shown to predict root and tip vortex locations and strengths similar to an overset method, but without the computational expense of modeling the blade surfaces. A hybrid Reynolds-averaged Navier-Stokes / Large Eddy Simulation (HRLES) turbulence model was extended to an unstructured grid framework and demonstrated to improve predictions of unsteady loading and shedding frequency in massively separated cases. For aeroelastic predictions, a methodology for tight coupling between an unstructured CFD solver and a computational structural dynamics tool was developed. Finally, time-accurate overset rotor simulations of a complete turbine---blades, nacelle, and tower---were conducted using both RANS and HRLES turbulence models. The HRLES model was able to accurately predict rotor loads when stalled. In yawed flow, excellent correlations of mean blade loads with experimental data were obtained across the span, and wake asymmetry and unsteadiness were also well-predicted.
104

3D numerical simulation of turbulent open-channel flow through vegetation

Kim, Su Jin 14 November 2011 (has links)
A comprehensive understanding of the hydrodynamics in vegetated open-channels and flow-vegetation interaction is of high interest to researchers and practitioners alike for instance in the content of river and coastal restoration schemes. The focus of this study was to investigate the effect of the presence of vegetation on flow resistance, turbulence statistics, and the instantaneous flow in open channels by performing three-dimensional computational-fluid-dynamics (CFD) simulations. Firstly, fully developed turbulent flow in fully-vegetated channel was analyzed by employing the method of high-resolution Large-Eddy Simulation (LES). Flow through a staggered array of rigid, emergent cylinders was simulated and the LES was validated through experiments. After validation, numerical simulations were performed at an extended parameter range of two different cylinder Reynolds numbers (ReD = 500 and 1340) and three different vegetation densities (φ = 0.016, 0.063, and 0.251). Flow structures and statistics were analyzed on the instantaneous flow and the effect of the vegetation density and cylinder Reynolds number was assessed. Moreover, drag forces exerted on the cylinders were calculated explicitly, and the effect of both ReD and φ on the drag coefficient was quantified. Secondly, two new alternative simulation strategies, a RANS based strategy with a vegetative closure model and a low-resolution Large-Eddy Simulation, were devised. They were evaluated by simulating several experimental cases with diverse conditions of the cylinder arrangement (i.e., staggered vs. random distribution), vegetation densities (φ = 0.016, 0.022, 0.063, 0.087, 0.091, 0.150, and 0.251), and cylinder Reynolds number (ReD = 170 - 1700). For the RANS based strategy, the importance of a-priori knowledge was assessed, and for the low-resolution LES, the efficiency and accuracy was demonstrated. Finally, a numerical strategy based on a porosity approach was developed and applied to open-channel flow through a natural plant. The simulated velocities were compared with experimentally acquired ones and results showed reasonable agreement. The results obtained in this research contribute to the understanding of fundamental mechanism of flow-vegetation interaction in vegetated open-channels, resolving turbulent flow-vegetation interaction explicitly. In addition, the new numerical strategies developed as part of this research are expected to allow describing the behavior of turbulent flow through artificial and natural vegetation with high efficiency and accuracy.
105

Large eddy simulation analysis of non-reacting sprays inside a high-g combustor

Martinez, Jaime, master of science in engineering 04 March 2013 (has links)
Inter-turbine burners are useful devices for increasing engine power. To reduce the size of these combustion devices, ultra-compact combustor (UCC) concepts are necessary. One such UCC concept is the centrifugal-force based high-g combustor design. Here, a model ultra-compact combustor (UCC) with fuel spray injection is simulated using large eddy simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) methodologies to understand mixing and spray dispersion inside centrifugal-based combustion systems. Both non-evaporating and evaporating droplet simulations were carried, as well as the tracking of a passive scalar, to explore this multiphase system. Simulation results show that mixing of fuel and oxidizer is based on a jet-in-crossflow system, with the fuel jet issuing into a circulating oxidizer flow stream. It is seen that a a high velocity vortex-like ring develops in the inner core of the combustor, which has enough momentum to obstruct the path of combustion products. There is minimal fuel droplet and vapor segregation inside the combustor and enhanced turbulent mixing is seen at mid-radius. / text
106

Numerical techniques for the design and prediction of performance of marine turbines and propellers

Xu, Wei, 1986- 21 December 2010 (has links)
The performance of a horizontal axis marine current turbine is predicted by three numerical methods, vortex lattice method MPUF-3A, boundary element method PROPCAV and a commercial RANS solver FLUENT. The predictions are compared with the experimental measurements for the same turbine model. A fully unsteady wake alignment is utilized in order to model the realistic wake geometry of the turbine. A lifting line theory based method is developed to produce the optimum circulation distribution for turbines and propellers and a lifting line theory based database searching method is used to achieve the optimum circulation distribution for tidal turbines. A nonlinear optimization method (CAVOPT-3D) and another database-searching design method (CAVOPT-BASE) are utilized to design the blades of marine current turbines and marine propellers. A design procedure for the tidal turbine is proposed by using the developed methods successively. Finally, an interactive viscous/potential flow method is utilized to analyze the effect of nonuniform inflow on the performance of tidal turbines. / text
107

CFD predictions of heat transfer coefficient augmentation on a simulated film cooled turbine blade leading edge

Beirnaert-Chartrel, Gwennaël 11 July 2011 (has links)
Computations were run to study heat transfer coefficient augmentation with film cooling for a simulated gas turbine blade leading edge. The realizable k-[epsilon] turbulence model (RKE) and Shear Stress Transport k-[omega] turbulence model (SST) were used for the computational simulations. RKE computations completed at a unity density ratio were confirmed to be consistent with experimental measurements conducted by Yuki et al.(1998) and Johnston et al. (1999) whereas SST computations exhibited significant discrepancies. Moreover the effect of the density ratio on heat transfer coefficient augmentation was studied because experimental measurements of heat transfer coefficient augmentation with film cooling are generally constrained to unity density ratio tests. It was shown that heat transfer coefficient augmentation can be simulated using unity density ratio jets, but only when scaled with the momentum flux ratio of the coolant jets. / text
108

Simulation DNS de l'interaction flamme-paroi dans les moteurs à allumage commandé

Leveugle, Benoît 13 December 2012 (has links) (PDF)
Dans le cadre du projet INTERMARC (INTERaction dans les Moteurs à Allumage Commandé), la tâche du CORIA a consisté à produire une base de données à l'échelle RANS (provenant de données DNS) afin de tester, valider et modifier le modèle d'interaction développée par IFPen. Ce modèle vise l'ajout d'une composante d'interaction, phénomène non pris en compte par les lois de paroi actuelles.Ce projet repose sur l'interaction forte entre les différents protagonistes présents. Le CORIA et le CETHIL ont travaillé ensemble à la réalisation d'une base de données pour tester les modèles initiaux proposés par IFPen, puis en fonction des résultats obtenus, à itérer avec IFPen pour modifier et améliorer les modèles. Ces tests ont inclus des simulations 2D laminaires, 2D turbulentes, et 3D turbulentes.
109

Investigation into the velocity distribution through an annular packed bed / Hendrik Jacobus Reyneke

Reyneke, Hendrik Jacobus January 2009 (has links)
The purpose of this study was to investigate the velocity distribution through an annular bed packed randomly with equal sized spheres. Extensive research has been conducted on the velocity distribution inside packed beds packed with equal sized spheres, different sized spheres, deformed spheres, cylinders and Raschig-rings. A majority of these experimental and numerical studies focused on the cylindrical packed bed. These studies and numerical models are all confined to the velocity profile once the fluid flow is fully developed. The development of the velocity through the inlet region of the bed and the fluid flow redistribution in the outlet of the bed is thus neglected. The experimental investigation into the velocity distribution down stream of the annular packed bed of the HTTU indicated that the velocity profile was independent of the mass flow rate for a particle Reynolds number range of 439 £ Re £ 3453 . These velocity profiles did not represent the distribution of the axial velocity due to shortcomings associated with the single sensor hot wire anemometry system used to measure the velocity distribution. A numerical investigation, using the RANS CFD code STAR-CCM+®, into the velocity distribution downstream of an explicitly modelled bed of spheres indicated that the axial velocity distribution could be extracted from the experimental velocity profiles by using an adjustment factor of 0.801. This adjusted velocity profile was used in the verification of the implicit bed simulation model. The implicit bed simulation model was developed in STAR-CCM+®. The resistance of the spheres was modelled using the KTA (1981) pressure drop correlation and the structure of the bed was modelled using the porosity correlation proposed by Martin (1978), while the effective viscosity model of Giese et al. (1998), adjusted by a factor of 0.8, was used to model the velocity distribution in the near wall region. It was found that the structure in the inlet region of the bed, where two walls disturb the packing structure, can be modelled as the weighted average of the radial and axial porosity while the structure in the outlet regions can be modelled by letting the radial porosity increase linearly to unity. The basic shape of the velocity profile is established immediately when the fluid enters the bed. The amplitude of the velocity peaks however increase in magnitude until the velocity profile is fully developed at a distance approximately of five sphere diameters from the bed inlet. The profile remains constant throughout the bed until the outlet region of the bed is reached. In the outlet region a significant amount of fluid redistribution is observed. The amplitude of the velocity peaks is reduced and the position of the velocity peaks is shifted inwards towards the centre of the annular region. The fully developed velocity profile, predicted by the simulation model is in good agreement with profiles presented by amongst others Giese et al. (1998). The current model however also offers insight into the development of the profile through the inlet of the bed and the fluid redistribution, which occurs in the outlet region of the bed. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
110

Investigation into the velocity distribution through an annular packed bed / Hendrik Jacobus Reyneke

Reyneke, Hendrik Jacobus January 2009 (has links)
The purpose of this study was to investigate the velocity distribution through an annular bed packed randomly with equal sized spheres. Extensive research has been conducted on the velocity distribution inside packed beds packed with equal sized spheres, different sized spheres, deformed spheres, cylinders and Raschig-rings. A majority of these experimental and numerical studies focused on the cylindrical packed bed. These studies and numerical models are all confined to the velocity profile once the fluid flow is fully developed. The development of the velocity through the inlet region of the bed and the fluid flow redistribution in the outlet of the bed is thus neglected. The experimental investigation into the velocity distribution down stream of the annular packed bed of the HTTU indicated that the velocity profile was independent of the mass flow rate for a particle Reynolds number range of 439 £ Re £ 3453 . These velocity profiles did not represent the distribution of the axial velocity due to shortcomings associated with the single sensor hot wire anemometry system used to measure the velocity distribution. A numerical investigation, using the RANS CFD code STAR-CCM+®, into the velocity distribution downstream of an explicitly modelled bed of spheres indicated that the axial velocity distribution could be extracted from the experimental velocity profiles by using an adjustment factor of 0.801. This adjusted velocity profile was used in the verification of the implicit bed simulation model. The implicit bed simulation model was developed in STAR-CCM+®. The resistance of the spheres was modelled using the KTA (1981) pressure drop correlation and the structure of the bed was modelled using the porosity correlation proposed by Martin (1978), while the effective viscosity model of Giese et al. (1998), adjusted by a factor of 0.8, was used to model the velocity distribution in the near wall region. It was found that the structure in the inlet region of the bed, where two walls disturb the packing structure, can be modelled as the weighted average of the radial and axial porosity while the structure in the outlet regions can be modelled by letting the radial porosity increase linearly to unity. The basic shape of the velocity profile is established immediately when the fluid enters the bed. The amplitude of the velocity peaks however increase in magnitude until the velocity profile is fully developed at a distance approximately of five sphere diameters from the bed inlet. The profile remains constant throughout the bed until the outlet region of the bed is reached. In the outlet region a significant amount of fluid redistribution is observed. The amplitude of the velocity peaks is reduced and the position of the velocity peaks is shifted inwards towards the centre of the annular region. The fully developed velocity profile, predicted by the simulation model is in good agreement with profiles presented by amongst others Giese et al. (1998). The current model however also offers insight into the development of the profile through the inlet of the bed and the fluid redistribution, which occurs in the outlet region of the bed. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.

Page generated in 0.0558 seconds