• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 40
  • 2
  • 1
  • Tagged with
  • 342
  • 342
  • 292
  • 276
  • 56
  • 50
  • 46
  • 33
  • 32
  • 32
  • 31
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Efeito da amostragem nas propriedades topológicas de redes complexas / Sampling effect on the topological properties of complex networks

Boas, Paulino Ribeiro Villas 19 June 2008 (has links)
Muitos sistemas complexos naturais ou construídos pelos seres humanos podem ser representados por redes complexas, uma teoria que une o estudo de grafos com a mecânica estatística. Esse tipo de representação, porém, pode ser comprometido pela maneira como os dados são obtidos. Em geral, os dados utilizados para representar tais sistemas nem sempre são precisos ou completos e correspondem a apenas amostras pequenas de redes maiores, como é o caso da teia mundial (WWW). Dessa forma, mesmo que as amostras sejam grandes, as suas propriedades são diretamente afetadas pela maneira como elas são obtidas e podem não corresponder com as de suas respectivas redes originais. Por exemplo, a amostragem mais utilizada para captura de roteadores da Internet, se empregada em redes aleatórias, tende a obter redes sem escala como resultado. Em contrapartida, amostras de redes sem escala não têm garantia de preservar essa estrutura. Por causa desses e outros problemas que possam ocorrer na amostragem das redes, é muito importante avaliar a variação das propriedades das redes a ruídos (para saber quais variam menos, sendo, portanto, mais adequadas para caracterizar redes com problemas de amostragem) e os efeitos da amostragem na caracterização, classificação e análise de redes complexas (pois redes amostradas podem não corresponder ao sistemas dos quais foram obtidas, tornando os resultados incorretos). Neste trabalho, foi investigada a influência de três tipos de perturbação (ruído): adição, remoção e troca aleatória de conexões nas propriedades de redes complexas, e as mais apropriadas para caracterizar redes amostradas foram identificadas. Além disso, foram definidas duas novas estruturas em redes complexas: árvores de borda e cadeias de vértices. A ocorrência dessas estruturas em redes mal amostradas tende a ser alta, indicando que existe uma relação com redes parcialmente amostradas. Para verificar tal hipótese, foi investigada a presença de cadeias de vértices em redes gradativamente amostradas por caminhadas aleatórias. / Several natural or human made complex systems can be represented by complex networks a theory which integrates the study of graphs with statistical mechanics. This kind of representation, however, can be biased by the way in which the data is obtained. In general, the data used to represent such systems is not always accurate, as in the case of theWorldWideWeb (WWW). Therefore, even if the sampled networks are large, their properties are directly affected by the way in which they were obtained and may not correspond to those of their respective original networks. For instance, the most used sampling methodology for capturing routers of the Internet, if performed on random networks, tends to obtain scale-free networks as results. On the other hand, sampled scale-free networks are not guaranteed to have this property. Because of these and other problems which may occur during the network sampling, it is very important to evaluate the variation of the network properties with respect to noise (in order to know which of them have less variation, being therefore more suitable for the characterization of networks with sampling problems) and the effect of sampling in the characterization, classification, and analysis of complex networks. In this work, we investigated the effect of three types of perturbations (noise), namely, edge addition, removal, and rewiring on the respectively estimated complex network properties, and the most suitable properties to characterize sampled networks were identified. Furthermore, two novel structures in complex networks were defined, namely, border trees and chains of vertices, which are possibly related to sampling. The occurrence of these structures in poorly-sampled networks was found to be high, implying a relation with partially sampled networks. In order to investigate such a hypothesis, the presence of chains of vertices was investigated in networks which were gradually sampled by random walks.
62

Modelagem de grãos confinados em invólucros utilizando redes complexas e métodos de imagem / Confined grain modeling using complex networks and image processing methods

Rigo, Gustavo Vrech 11 June 2015 (has links)
A formação de arcos – estruturas que promovem a anisotropia de forças dentro de um sistema – acontece corriqueiramente dentro de silos ou maquinaria agrícola. A presente tese propõe um modelo baseado em redes complexas para modelar tal fenômeno, definindo cada grão como vértice e a força que dois grãos trocam como o peso de uma ligação entre eles. A partir de ensaios tomográficos de 11 diferentes tipos de grãos foi desenvolvido um método para transformar cada uma das imagens tridimensionais resultantes numa rede complexa. Cada imagem foi pré-processada e submetida a uma transformada watershed utilizando como marcadores internos a erosão da própria imagem. Este processo tridimensional resultou na segmentação de cada um dos grãos da imagem original, tornando possível a extração de propriedades físicas de cada grão, como massa, centro de massa, momento de inércia, e as forças às quais este está submetido. A partir destes dados, a rede complexa de cada uma das 11 amostras foi construída. A amostra da soja foi comparada com um padrão-ouro pré-estabelecido possibilitando eventuais refinos no método. As reconstruções tridimensionais segmentadas de cada amostra apresentaram um resultado visual aceitável, embora algumas segmentações tenham sofrido com o efeito do elemento estruturante da erosão, uma vez que este tem de ser grande o suficiente para segmentar grãos adjacentes, porém não o suficiente para super-segmentar um único grão. A rede complexa formada a partir da imagem de soja foi submetida a uma análise mais profunda, estudando e normalizando sua propriedade strength, uma natural candidata para detectar anisotropia de forças. Os vértices com alto valor normalizado de strength foram definidos como o arco da estrutura, e sua análise visual permitiu concluir que estes de fato são os elementos responsáveis pela estrutura do arranjo, assim como substanciar o sucesso do método aqui proposto em detectar automaticamente o arco utilizando uma imagem tridimensional. / The formation of arches – structures that promotes force anisotropy within a system – appears routinely inside silos or agricultural machinery. This current thesis proposes a method for modeling this phenomenon as a complex network, defining each grain as vertex and a force that two grains exchanges as the weight of the link between them. By using computed tomography, 3D images were taken from 11 grain samples, and a method developed to transform each of this resulting images in a complex network. Each image had to be pre-processed and subjected to a watershed transform using as inner markers the erosion of the image itself. This process resulted in three-dimensional segmentation of each grain of the original image, allowing the estimation of the physical properties of each grain, such as mass, center of mass, moment of inertia and the forces to which the grain is subjected. From these measures, the complex network of each of the 11 samples was constructed. Sample soybeans were compared with a gold-standard, allowing improvements to the methodology. The segmented three-dimensional reconstructions of each sample provided acceptable visual output, although some samples suffered from erosion due to the structural element size, since it must be large enough to segment adjacent grains, but not enough to super-segment a single grain. The complex network obtained from the soybeans image was subjected to further analysis, studying and normalizing its strength property, a natural candidate to detect force anisotropy. Vertices with high normalized values of strength were understood as defining the arch of the structure, and its visual analysis showed that these indeed are the elements responsible for the arrangement structure. These results support the ability of the proposed method in automatically detecting the arches using as input a three-dimensional image.
63

Estudo da relação estrutura-dinâmica em redes modulares / Unveiling the relationship between structure and dynamics on modular networks

Comin, César Henrique 26 April 2016 (has links)
Redes complexas têm sido cada vez mais utilizadas para a modelagem e análise dos mais diversos sistemas da natureza. Um dos tópicos mais estudados na área de redes está relacionado com a identificação e caracterização de grupos de nós mais conectados entre si do que com o restante da rede, chamados de comunidades. Neste trabalho, mostramos que comunidades podem ser caracterizadas por quatro classes gerais de propriedades, relacionadas com a topologia interna, dinâmica interna, fronteira topológica, e fronteira dinâmica das comunidades. Verificamos como estas diferentes características influenciam em dinâmicas ocorrendo sobre a rede. Em especial, estudamos o inter-relacionamento entre a topologia e a dinâmica das comunidades para cada uma dessas quatro classes de atributos. Mostramos que certas propriedades provocam a alteração desse inter-relacionamento, dando origem ao que chamamos de comportamento específico de comunidades. De forma a apresentarmos e analisarmos este conceito nos quatro casos considerados, estudamos as seguintes combinações topológicas e dinâmicas. Na primeira, investigamos o passeio aleatório tradicional ocorrendo sobre redes direcionadas, onde mostramos que a direção das conexões entre comunidades é o principal fator de alteração no relacionamento topologia-dinâmica. Aplicamos a metodologia proposta em uma rede real, definida por módulos corticais de animais do gênero Macaca. O segundo caso estudado aborda o passeio aleatório enviesado ocorrendo sobre redes não direcionadas. Mostramos que o viés associado às transições da dinâmica se tornam cada vez mais relevantes com o aumento da modularidade da rede. Verificamos também que a descrição da dinâmica a nível de comunidades possibilita modelarmos com boa acurácia o fluxo de passageiros em aeroportos. A terceira análise realizada envolve a dinâmica neuronal integra-e-dispara ocorrendo sobre comunidades geradas segundo o modelo Watts-Strogatz. Mostramos que as comunidades podem possuir não apenas diferentes níveis de ativação dinâmica, como também apresentar diferentes regularidades de sinal dependendo do parâmetro de reconexão utilizado na criação das comunidades. Por último, estudamos a influência das posições de conexões inibitórias na dinâmica integra-e-dispara, onde mostramos que a inibição entre comunidades dá origem a interessantes variações na ativação global da rede. As análises realizadas revelam a importância de, ao modelarmos sistemas reais utilizando redes complexas, considerarmos alterações de parâmetros do modelo na escala de comunidades. / There has been a growing interest in modeling diverse types of real-world systems through the tools provided by complex network theory. One of the main topics of research in this area is related to the identification and characterization of groups, or communities, of nodes more densely connected between themselves than with the rest of the network. We show that communities can be characterized by four general classes of features, associated with the internal topology, internal dynamics, topological border, and dynamical border of the communities. We verify that these characteristics have direct influence on the dynamics taking place over the network. Particularly, for each considered class we study the interdependence between the topology and the dynamics associated with each network community. We show that some of the studied properties can influence the topology-dynamics interdependence, inducing what we call the communities specific behavior. In order to present and characterize this concept on the four considered classes, we study the following combinations of network topology and dynamics. We first investigate traditional random walks taking place on a directed network. We demonstrate that, for this dynamics, the direction of the edges between communities represents the main method for the modification of the topology-dynamics relationship. We apply the developed approach on a real-world network, defined by the connectivity between cortical regions in primates of the Macaca genus. The second studied case considers the biased random walk on undirected networks. We demonstrate that the transition bias of this dynamics becomes more relevant for higher network modularity. In addition, we show that the biased random walk can be used to model with good accuracy the passenger flow inside the communities of two airport networks. The third analysis is done on a neuronal dynamics, called integrate-and-fire, applied to networks composed of communities generated by the Watts-Strogatz model. We show that the considered communities can not only posses distinct dynamical activation levels, but also yield different signal regularity. Lastly, we study the influence of the positions of inhibitory connections on the integrate-and-fire dynamics. We show that inhibitory connections placed between communities can have a non-trivial influence on the global behavior of the dynamics. The current study reveals the importance of considering parameter variations of network models at the scale of communities.
64

Development of new models for authorship recognition using complex networks / Desenvolvimento de novos modelos para reconhecimento de autoria com a utilização de redes complexas

Marinho, Vanessa Queiroz 14 July 2017 (has links)
Complex networks have been successfully applied to different fields, being the subject of study in different areas that include, for example, physics and computer science. The finding that methods of complex networks can be used to analyze texts in their different complexity levels has implied in advances in natural language processing (NLP) tasks. Examples of applications analyzed with the methods of complex networks are keyword identification, development of automatic summarizers, and authorship attribution systems. The latter task has been studied with some success through the representation of co-occurrence (or adjacency) networks that connect only the closest words in the text. Despite this success, only a few works have attempted to extend this representation or employ different ones. Moreover, many approaches use a similar set of measurements to characterize the networks and do not combine their techniques with the ones traditionally used for the authorship attribution task. This Masters research proposes some extensions to the traditional co-occurrence model and investigates new attributes and other representations (such as mesoscopic and named entity networks) for the task. The connectivity information of function words is used to complement the characterization of authors writing styles, as these words are relevant for the task. Finally, the main contribution of this research is the development of hybrid classifiers, called labelled motifs, that combine traditional factors with properties obtained with the topological analysis of complex networks. The relevance of these classifiers is verified in the context of authorship attribution and translationese identification. With this hybrid approach, we show that it is possible to improve the performance of networkbased techniques when they are combined with traditional ones usually employed in NLP. By adapting, combining and improving the model, not only the performance of authorship attribution systems was improved, but also it was possible to better understand what are the textual quantitative factors (measured through networks) that can be used in stylometry studies. The advances obtained during this project may be useful to study related applications, such as the analysis of stylistic inconsistencies and plagiarism, and the analysis of text complexity. Furthermore, most of the methods proposed in this work can be easily applied to many natural languages. / Redes complexas vem sendo aplicadas com sucesso em diferentes domínios, sendo o tema de estudo de distintas áreas que incluem, por exemplo, a física e a computação. A descoberta de que métodos de redes complexas podem ser utilizados para analisar textos em seus distintos níveis de complexidade proporcionou avanços em tarefas de processamento de línguas naturais (PLN). Exemplos de aplicações analisadas com os métodos de redes complexas são a detecção de palavras-chave, a criação de sumarizadores automáticos e o reconhecimento de autoria. Esta última tarefa tem sido estudada com certo sucesso através da representação de redes de co-ocorrência (ou adjacência) de palavras que conectam apenas as palavras mais próximas no texto. Apesar deste sucesso, poucos trabalhos tentaram estender essas redes ou utilizar diferentes representações. Além disso, muitas das abordagens utilizam um conjunto semelhante de medidas de redes complexas e não combinam suas técnicas com as utilizadas tradicionalmente na tarefa de reconhecimento de autoria. Esta pesquisa de mestrado propõe extensões à modelagem tradicional de co-ocorrência e investiga a adequabilidade de novos atributos e de outras modelagens (como as redes mesoscópicas e de entidades nomeadas) para a tarefa. A informação de conectividade de palavras funcionais é utilizada para complementar a caracterização da escrita dos autores, uma vez que essas palavras são relevantes para a tarefa. Finalmente, a maior contribuição deste trabalho consiste no desenvolvimento de classificadores híbridos, denominados labelled motifs, que combinam fatores tradicionais com as propriedades fornecidas pela análise topológica de redes complexas. A relevância desses classificadores é verificada no contexto de reconhecimento de autoria e identificação de translationese. Com esta abordagem híbrida, mostra-se que é possível melhorar o desempenho de técnicas baseadas em rede ao combiná-las com técnicas tradicionais em PLN. Através da adaptação, combinação e aperfeiçoamento da modelagem, não apenas o desempenho dos sistemas de reconhecimento de autoria foi melhorado, mas também foi possível entender melhor quais são os fatores quantitativos textuais (medidos via redes) que podem ser utilizados na área de estilometria. Os avanços obtidos durante este projeto podem ser utilizados para estudar aplicações relacionadas, como é o caso da análise de inconsistências estilísticas e plagiarismos, e análise da complexidade textual. Além disso, muitos dos métodos propostos neste trabalho podem ser facilmente aplicados em diversas línguas naturais.
65

Análise de robustez em redes complexas / Analysis of Robustness in Complex Networks

Barbieri, André Luiz 14 February 2011 (has links)
A teoria das redes complexas é uma área relativamente nova da Ciência, inspirada por dados empíricos tais como os obtidos de interações biológicas e sociais. Esta área apresenta uma natureza altamente interdisciplinar, de modo que tem unido cientistas de diferentes áreas, tais como matemática, física, biologia, ciência computação, sociologia, epidemiologia e muitas outras. Um dos problemas fundamentais nessa área é entender como a organização de redes complexas influencia em processos dinâmicos, como sincronização, propagação de epidemias e falhas e ataques. Nessa dissertação, é apresentada uma análise da relação entre estrutura e robustez de redes complexas através da remoção de vértices. Para a aplicação deste estudo, foram adquiridas bases de dados de interações de proteínas de quatro espécies, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster e Homo sapiens, como também mapas das malhas de rodovias de sete países, Brasil, Portugal, Polônia, Romênia, Austrália, Índia e África do Sul. Foi estudada a robustez dessas redes através de simulação de falhas e ataques, segundo uma dinâmica de remoção de vértices. Nesse caso, a variação na estrutura das redes devido a essa remoção foi quantificada pelas medidas do tamanho da maior componente conectado, do diâmetro e da média dos comprimentos dos menores caminhos. Ademais, foram utilizadas duas medidas para quantificar a robustez, isto é, a entropia da distribuição das conexões e entropia dinâmica, baseada em cadeias de Markov. Tais medidas foram aplicadas nas redes reais onde se verificou que as espécies mais complexas, como o homem e a mosca, apresentam as redes mais robustas. Com relação aos países, Romênia, Portugal e Brasil apresentam as malhas rodoviárias mais resistentes a perturbações. A correlação entre essas medidas de entropia e as medidas topológicas permitiu identificar que a média do grau dos vizinhos e o coeficiente da lei de potência da distribuição do número de conexões são as medidas que apresentam maior correlação com as medidas de entropia. Tal resultado sugere que a presença de conexões alternativas entre os vizinhos dos vértices removidos favorece a resiliência das redes, pois tendem a minimizar as perturbações causadas pelas remoções. No caso das malhas rodoviárias, foi proposta uma nova medida de acessibilidade e esta se mostrou altamente correlacionada com a entropia dinâmica. Nesse caso, verificou-se que as cidades localizadas no litoral e nas fronteiras dos países são as que menos contribuem para robustez das redes de rodovias. Desse modo, os resultados obtidos sugerem que o planejamento do sistema de transporte de um país deve priorizar o investimento em infra-estrutura rodoviária próximo das cidades com menor acessibilidade, de forma a torná-las mais acessíveis, visando melhorar o transporte de mercadorias e pessoas. Os métodos aqui propostos permitem identificar tais cidades. Ademais, na análise de redes de proteínas, os resultados obtidos podem auxiliar no desenvolvimento de novos modelos de redes, bem como entender os mecanismos evolutivos que priorizam a robustez dos organismos. / The study of complex networks is a relatively new area of science inspired by the empirical studies of real-world networks, such as social and biological networks. This are has a highly multidisciplinary nature, which has brought together researchers from many areas including mathematics, physics, biology, computer science, sociology, epidemiology, statistics and others. One of the main problems in this area is to know how the network organization is related to dynamic process, such as synchronization, epidemic spreading and topological perturbation due to deletion of nodes and edges. In this dissertation, it is presented a study of the relationship between the structure and resilience of complex networks. This investigation was applied to the protein-protein networks of four species, namely Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens, as well as the road networks of seven countries, i.e. Brazil, Portugal, Romania, Australia, India, and South Africa. It was studied the resilience of such networks through simulations of random fails and attacks by node deletion. The topological changes due to this simulation were quantified by measures, including the size of the largest component, the diameter and the average shortest path length. In addition, the network robustness was quantified by the entropy of the degree distribution and the dynamic entropy, related to Markov chains. This analysis in real-world networks revealed that more complex species, such as the H. sapiens and D. melanogaster are the most resilient. In addition, Romania, Brazil and Portugal have the most robust road maps. The correlation analysis between topological and dynamic measures revealed that the average neighborhood degree and the coefficient of scaling in the power law of the degree distribution quantify the proprieties that most contribute for the resilience in protein networks. Moreover, with respect to the road networks, it was introduced a new accessibility measure, which revealed to be correlated to the dynamic entropy. In fact, cities localized in the border of networks are the ones with the smallest contribution for the network resilience. Therefore, the obtained results suggest that the traffic planning should mainly connect cities near the frontiers of countries, in order to improve the resilience and accessibility. In addition, the obtained results with respect to protein networks allow improving network modeling and understanding the biological processes that reinforce the resilience of organisms.
66

Sincronização explosiva em redes complexas / Explosive synchronization in complex networks

Peron, Thomas Kauê Dal\'Maso 21 February 2013 (has links)
Processos de sincronização são observados em uma imensa quantidade de sistemas físicos, biológicos, químicos, tecnológicos e sociais. Tais sistemas podem ser descritos e modelados utilizando a teoria das redes complexas, de forma que o completo entendimento da emergência do comportamento coletivo nestes sistemas complexos só é alcançado por teorias que englobam a interação entre seus elementos. Nesta dissertação, estudamos a emergência de transições de fase de primeira-ordem na sincronização de osciladores acoplados através de estruturas heterogêneas e não-triviais. Utilizando teorias de campo médio, obtemos a expressão analítica do acoplamento crítico necessário para a ocorrência de sincronização explosiva em redes livre-escala. Além disso, estudamos o comportamento de tais transições na presença de atrasos temporais e verificamos que é possível elevar o grau de sincronismo dos osciladores quando a interação se dá de forma não-instantânea. Os resultados obtidos contribuem para um melhor entendimento da relação entre topologia e dinâmica em redes. / Synchronization processes are observed in many physical, biological, chemical, technological and social systems. These systems can be described and modelled through the theory of complex networks, in a way that the full comprehension of the emergence of collective behavior in these complex systems will only be achieved by theories that encompass the interaction of its elements. In this thesis, we study the emergence of first-order phase transitions in the synchronization of oscillators coupled through heterogeneous and non-trivial structures. By using mean-field theories, we obtain an analytical expression for the critical coupling necessary for the occurrence of explosive synchronization in scale-free networks. Furthermore, we study the behavior of such transitions in the presence of time delays, verifying that is possible to enhance the synchronization level of the oscillators when the interaction is non-instantaneous. The obtained results contribute for the better understanding of the interplay between topology and dynamics in networks.
67

Caracterização de classes e detecção de outliers em redes complexa / Characterization of classes and outliers detection in complex networks

Berton, Lilian 25 April 2011 (has links)
As redes complexas surgiram como uma nova e importante maneira de representação e abstração de dados capaz de capturar as relações espaciais, topológicas, funcionais, entre outras características presentes em muitas bases de dados. Dentre as várias abordagens para a análise de dados, destacam-se a classificação e a detecção de outliers. A classificação de dados permite atribuir uma classe aos dados, baseada nas características de seus atributos e a detecção de outliers busca por dados cujas características se diferem dos demais. Métodos de classificação de dados e de detecção de outliers baseados em redes complexas ainda são pouco estudados. Tendo em vista os benefícios proporcionados pelo uso de redes complexas na representação de dados, o presente trabalho apresenta o desenvolvimento de um método baseado em redes complexas para detecção de outliers que utiliza a caminhada aleatória e um índice de dissimilaridade. Este método possibilita a identificação de diferentes tipos de outliers usando a mesma medida. Dependendo da estrutura da rede, os vértices outliers podem ser tanto aqueles distantes do centro como os centrais, podem ser hubs ou vértices com poucas ligações. De um modo geral, a medida proposta é uma boa estimadora de vértices outliers em uma rede, identificando, de maneira adequada, vértices com uma estrutura diferenciada ou com uma função especial na rede. Foi proposta também uma técnica de construção de redes capaz de representar relações de similaridade entre classes de dados, baseada em uma função de energia que considera medidas de pureza e extensão da rede. Esta rede construída foi utilizada para caracterizar mistura entre classes de dados. A caracterização de classes é uma questão importante na classificação de dados, porém ainda é pouco explorada. Considera-se que o trabalho desenvolvido é uma das primeiras tentativas nesta direção / Complex networks have emerged as a new and important way of representation and data abstraction capable of capturing the spatial relationships, topological, functional, and other features present in many databases. Among the various approaches to data analysis, we highlight classification and outlier detection. Data classification allows to assign a class to the data based on characteristics of their attributes and outlier detection search for data whose characteristics differ from the others. Methods of data classification and outlier detection based on complex networks are still little studied. Given the benefits provided by the use of complex networks in data representation, this study developed a method based on complex networks to detect outliers based on random walk and on a dissimilarity index. The method allows the identification of different types of outliers using the same measure. Depending on the structure of the network, the vertices outliers can be either those distant from the center as the central, can be hubs or vertices with few connections. In general, the proposed measure is a good estimator of outlier vertices in a network, properly identifying vertices with a different structure or a special function in the network. We also propose a technique for building networks capable of representing similarity relationships between classes of data based on an energy function that considers measures of purity and extension of the network. This network was used to characterize mixing among data classes. Characterization of classes is an important issue in data classification, but it is little explored. We consider that this work is one of the first attempts in this direction
68

Propriedades de redes aplicadas à atribuição de autoria / Network features for authorship attribution

Valencia, Camilo Akimushkin 22 May 2017 (has links)
O reconhecimento de autoria é uma área de pesquisa efervescente, com muitas aplicações, incluindo detecção de plágio, análise de textos históricos, reconhecimento de mensagens terroristas ou falsificação de documentos. Modelos teóricos de redes complexas já são usados para o reconhecimento de autoria, mas alguns aspectos importantes têm sido ignorados. Neste trabalho, exploramos a dinâmica de redes de co-ocorrência e a relação com as palavras que representam os nós e descobrimos que ambas são claras assinaturas de autoria. Com otimização dos descritores da topologia das redes e de algoritmos de aprendizado de máquina, foi possível obter taxas de acerto maiores que 85%, sendo atingida uma taxa de 98.75% em um caso específico, para coleções de 80 livros, cada uma compilada de 8 autores de língua inglesa com 10 livros por autor. Esta tese demonstra que existem ainda aspectos inexplorados das redes de co-ocorrência de textos, o que deve permitir avanços ainda maiores no futuro próximo. / Authorship attribution is an active research area with many applications, including detection of plagiarism, analysis of historical texts, terrorist message identification or document falsification. Theoretical models of complex networks are already used for authorship attribution, but some issues have been ignored. In this thesis, we explore the dynamics of co-occurrence networks and the role of words, and found that they are both clear signatures of authorship. Using optimized descriptors for the network topology and machine learning algorithms, it has been possible to achieve accuracy rates above 85%, with a rate of 98.75% being reached in a particular case, for collections of 80 books produced by 8 English-speaking writers with 10 books per author. It is also shown that there are still many unexplored aspects of co-occurrence networks of texts, which seems promising for near future developments.
69

Estudo e comparação da topologia de redes de interação de proteínas / Topological studies of protein interaction networks

Ronqui, José Ricardo Furlan 12 December 2018 (has links)
Redes complexas são utilizadas para representar sistemas complexos, compostos de elementos que interagem uns com os outros. Uma das grandes vantagens de se empregar as redes é a possibilidade de se estudar a topologia presente nos mais diversos sistemas para obtermos informações sobre eles, entendê-los e compará-los. Devido à sua importância para a compreensão de processos intracelulares, desde início do desenvolvimento da área das redes complexas estudou-se a topologia da interação entre proteínas. Entretanto nos últimos anos com o desenvolvimento de novas técnicas de detecção o número de proteínas e interações reportadas cresceu de maneira muito acentuada; além disso, também existem alguns pontos sobre a sua topologia sobre os quais ainda não existe um consenso, como por exemplo qual a distribuição de graus desse tipo de rede. Neste trabalho estudamos as propriedades topológicas de redes de interação entre proteínas, utilizando as informações do banco de dados STRING, com ênfase no comportamento de suas medidas de centralidade e do espectro da matriz Laplaciana normalizada. Tanto a análise das medidas de centralidade e de suas correlações, quanto do espectro da matriz Laplaciana mostram que existem padrões topológicos que são conservados entre as redes dos organismos e que os mesmos também podem ser empregados para sua caracterização. Nossos resultados também mostram que as funções biológicas desempenhadas pelas proteínas podem ser identificadas pelas medidas de centralidade. Especificamente para a centralidade de autovetor, nossas análises indicam que ela está localizada nos maiores K-cores das redes consideradas. Os resultados aqui obtidos ressaltam que muitas informações relevantes podem ser extraídas da topologia das interações entre proteínas, além de indicarem a existência de possíveis estruturas conservadas; entretanto devido a incompletude dessas redes mais estudos precisam ser conduzidos para a avaliação de possíveis mudanças nos resultados aqui apresentados. / Complex networks can be used to model complex systems, composed of main elements that interact with each other. The advantage of using this approach is the possibility to study the topology of a wide range of systems so that we can get more information, understand and compare them. Due to its importance on the understanding of the intracellular biological processes, since the early beginning of the development of the complex networks field protein-protein interaction topologies have been studied. However, new techniques for the detection of proteins and their interactions have been developed recently, which has significantly increased the availability and reliability of the corresponding data over the last few years; moreover, there still are some debate about the topology of protein-protein interaction networks such as the degree distribution of this type of network. Here we will study the topological properties of protein-protein interaction networks created using the information of the STRING database focusing on centrality measures of their nodes, the correlation between them, and the normalized Laplacian matrix spectrum. Our results show the existence of topological patterns conserved between the protein interaction networks of different organisms and that both the correlation of the centrality pairs and the spectrum of the Laplacian matrix can be used for network characterization. Another study indicates that the set of centrality measures of a protein can be used to identify clusters with well defined biological functions. A more detailed look at the eigenvector centrality behavior reveals that this measure is localized on the proteins of the highest k-cores for all networks. These results highlight the importance of the topology on the study of protein-protein interactions and that more studies can lead to a better a more complete understanding of such systems.
70

Relações da estrutura de redes complexas com as dinâmicas do passeio aleatório, de transporte e de sincronização / Relationships between the structure of complex networks and the random walk, transport and synchronization dynamics

Antiqueira, Lucas 13 December 2011 (has links)
O relacionamento entre estrutura e dinâmica em redes complexas foi considerado utilizando-se uma ampla gama de diferentes técnicas. Diversas redes reais foram estudadas em termos das correlações entre grau e atividade. A medida de atividade é definida como a proporção de visitas por vértice no regime estacionário do passeio aleatório simples. O estudo desse tipo de correlação é importante pois pode fornecer subsídios para que uma propriedade dinâmica de um vértice possa ser obtida somente analisando-se seu(s) grau(s). O conceito de acessibilidade foi abordado nesse contexto, permitindo que fossem evidenciadas diferentes correlações, em redes como a WWW, de acordo com a intensidade de acessibilidade dos vértices. Propôs-se também um novo modelo de rede baseado no crescimento do número de vértices em que novas conexões são criadas com probabilidade proporcional à atividade de cada vértice. Esse modelo pode ser entendido como uma generalização do modelo de Barabási e Albert para redes com arestas direcionadas. Utilizando-se um conjunto de diversas medidas estruturais, mostrou-se que o novo modelo apresenta, entre outros modelos tradicionais de redes, a maior compatibilidade com três redes corticais. Foi também desenvolvido um método para caracterização da distribuição de subgrafos e seus inter-relacionamentos. O principal aspecto dessa metodologia é a expansão gradual dos subgrafos, desenvolvida para que os vértices que encontram-se fora de subgrafos possam ter suas relevâncias quantificadas em termos da importância no estabelecimento das conexões entre subgrafos. Experimentos para ilustração do método foram realizados utilizando-se quatro modelos de redes e cinco redes reais, e os resultados obtidos foram relacionados aos processos dinâmicos de transporte e de espalhamento. Outro tópico aqui considerado é o dos efeitos da amostragem de redes corticais, quantificados por meio de análise multivariada e classificação, fazendo uso de um conjunto de medidas estruturais de redes. Esses efeitos também foram mensurados em termos do comportamento dinâmico das redes (sincronização e acessibilidade). Simulações dos métodos de encefalografia MEG e EEG mostraram que as redes amostradas podem apresentar características bem diferentes das da rede original, principalmente no caso de amostras pequenas. Adicionalmente, a rede integrada da bactéria Escherichia coli foi analisada, a qual incorpora (i) regulação de transcrição gênica, (ii) vias metabólicas e de sinalização e (iii) interações entre proteínas. Outliers foram identificados no relacionamento entre grau e atividade, os quais representam reguladores globais de transcrição. Além disso, verificou-se que esses outliers são genes altamente expressos em diferentes condições, apresentando, portanto, uma natureza global no controle de diversos outros genes da célula. / The relationship between structure and dynamics was addressed by employing a wide range of different approaches. First, the correlations between degree and activity were studied in various real-world networks. The activity is defined as the proportion of visits to each node in the steady-state regime of the simple random walk. This type of correlation can provide means to assess node activity only in terms of the degree. The concept of accessibility was included in this analysis, showing an intimate relationship (in networks such as the WWW) between the type of correlation and the level of accessibility observed on nodes. A new complex network model founded on growth was also proposed, with new connections being established proportionally to the current activity of each node. This model can be understood as a generalization of the Barabási-Albert model for directed networks. By using several topological measurements we showed that this new model provides, among several other traditional theoretical types of networks, the greatest compatibility with three real-world cortical networks. Additionally, we developed a novel approach considering non-overlapping subgraphs and their interrelationships and distribution through a given network. The main aspect of the methodology is a novel merging procedure developed to assess the relevance of nodes (in relation to the overall subgraph interconnectivity) lying outside subgraphs. Experiments were carried out on four types of network models and five instances of real-world networks, in order to illustrate the application of the method. Furthermore, these results were related to the properties of the transport and spreading processes. Other topic here addressed is the sampling problem in cortical networks. Effects of sampling were quantified using multivariate analysis and classifiers based on structural network measurements. Samples were also evaluated in terms of their dynamical behavior using a synchronization model and the measure of accessibility. By simulating MEG/EEG recordings it was found that sampled networks may substantially deviate from the respective original networks, mainly for small sample sizes. We also report an analysis of the integrated network of Escherichia coli, which incorporates (i) transcriptional regulatory interactions, (ii) metabolic/signaling feedback and (iii) protein-protein interactions. Network outliers, which represent global transcriptional regulators, were identified in the relationship between out-degree and activity. These outliers are highly and widely expressed across conditions, therefore supporting their global nature in controlling many genes in the cell.

Page generated in 0.0448 seconds