• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 548
  • 94
  • 93
  • 91
  • 30
  • 22
  • 17
  • 15
  • 14
  • 12
  • 12
  • 9
  • 9
  • 8
  • 5
  • Tagged with
  • 1125
  • 419
  • 167
  • 149
  • 114
  • 108
  • 105
  • 94
  • 86
  • 85
  • 83
  • 71
  • 70
  • 64
  • 63
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

An Evolutionary Programming Algorithm for Automatic Chromatogram Alignment

Schwartz, Bonnie Jo 12 April 2007 (has links)
No description available.
242

A Triangulation-Based Approach to Nonrigid Image Registration

Linden, Timothy R. 12 July 2011 (has links)
No description available.
243

Multi-scale spectral embedding representation registration (MSERg) for multi-modal imaging registration

Li, Lin 13 September 2016 (has links)
No description available.
244

Segmentation Guided Registration for Medical Images

Wang, Yang 08 December 2005 (has links)
No description available.
245

Real-time 3D elastic image registration

Castro Pareja, Carlos Raul 17 June 2004 (has links)
No description available.
246

Studies on Log-Polar Transform for Image Registration and Improvements Using Adaptive Sampling and Logarithmic Spiral

Matungka, Rittavee 27 August 2009 (has links)
No description available.
247

Precise Image Registration and Occlusion Detection

Khare, Vinod 08 September 2011 (has links)
No description available.
248

Voter Registration Made Easy: Who Takes Advantage of Election Day Registration and Same Day Registration and Do They Vote?

Cole, Jeffrey Bryan 19 December 2012 (has links)
No description available.
249

Improving the Quality of LiDAR Point Cloud Data for Greenhouse Crop Monitoring

Si, Gaoshoutong 09 August 2022 (has links)
No description available.
250

Fast 3D Deformable Image Registration on a GPU Computing Platform

Mousazadeh, Mohammad Hamed 10 1900 (has links)
<p>Image registration has become an indispensable tool in medical diagnosis and intervention. The increasing need for speed and accuracy in clinical applications have motivated researchers to focus on developing fast and reliable registration algorithms. In particular, advanced deformable registration routines are emerging for medical applications involving soft-tissue organs such as brain, breast, kidney, liver, prostate, etc. Computational complexity of such algorithms are significantly higher than those of conventional rigid and affine methods, leading to substantial increases in execution time. In this thesis, we present a parallel implementation of a newly developed deformable image registration algorithm by Marami et al. [1] using the Computer Unified Device Architecture (CUDA). The focus of this study is on acceleration of the computations on a Graphics Processing Unit (GPU) to reduce the execution time to nearly real-time for diagnostic and interventional applications. The algorithm co-registers preoperative and intraoperative 3-dimensional magnetic resonance (MR) images of a deforming organ. It employs a linear elastic dynamic finite-element model of the deformation and distance measures such as mutual information and sum of squared difference to align volumetric image data sets. In this study, we report a parallel implementation of the algorithm for 3D-3D MR registration based on SSD on a CUDA capable NVIDIA GTX 480 GPU. Computationally expensive tasks such as interpolation, displacement and force calculation are significantly accelerated using the GPU. The result of the experiments carried out with a realistic breast phantom tissue shows a 37-fold speedup for the GPUbased implementation compared with an optimized CPU-based implementation in high resolution MR image registration. The CPU is a 3.20 GHz Intel core i5 650 processor with 4GB RAM that also hosts the GTX 480 GPU. This GPU has 15 streaming multiprocessors, each with 32 streaming processors, i.e. a total of 480 cores. The GPU implementation registers 3D-3D high resolution (512×512×136) image sets in just over 2 seconds, compared to 1.38 and 23.25 minutes for CPU and MATLAB-based implementations, respectively. Most GPU kernels which are employed in 3D-3D registration algorithm also can be employed to accelerate the 2D-3D registration algorithm in [1].</p> / Master of Applied Science (MASc)

Page generated in 0.0248 seconds