• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 10
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multidimensional Measurements on RF Power Amplifiers

Condo Neira, Edith Graciela January 2008 (has links)
<p>Measurements are important to specify and verify properties for components, modules and systems. The specifications for a certain figure of merit are usually given in a numerical value or a two dimensional plot. However, there are some devices, like power amplifiers with certain figure of merits that depends on two or more working conditions, requiring a three dimensional plot.</p><p>This thesis presents a measurement method including graphical user interface of three parameters gain, efficiency and distortion when two-tone or WCDMA signals are used as an input to the PA.</p>
2

Multidimensional Measurements on RF Power Amplifiers

Condo Neira, Edith Graciela January 2008 (has links)
Measurements are important to specify and verify properties for components, modules and systems. The specifications for a certain figure of merit are usually given in a numerical value or a two dimensional plot. However, there are some devices, like power amplifiers with certain figure of merits that depends on two or more working conditions, requiring a three dimensional plot. This thesis presents a measurement method including graphical user interface of three parameters gain, efficiency and distortion when two-tone or WCDMA signals are used as an input to the PA.
3

Switched-model Linearization Technique for RF Power Amplifiers

Mahama, Abdul-Salim January 2017 (has links)
No description available.
4

Frequency domain model fitting and Volterra analysis implemented on top of harmonic balance simulation

Aikio, J. P. (Janne P.) 24 April 2007 (has links)
Abstract The modern wireless communication techniques are aiming on increasing bandwidth and the number of carriers for higher data rate. This sets challenging linearity requirements for RF power amplifiers (PAs). Unfortunately, high linearity can only be obtained at the cost of efficiency. In order to improve the performance of the PA, in-depth understanding of nonlinear behaviour is mandatory. This calls for techniques that can give componentwise information of the causes of the distortion. The aim of this thesis is to develop a technique that can provide such information. This thesis proposes a detailed distortion analysis technique that is based on frequency domain fitting of polynomial models. Simulated large-signal spectra are used for fitting as these contain the necessary information about the large-signal bias point and amplitude range. Moreover, in the frequency domain the delays are easy to compensate, and detailed analysis to any fitted tone can be performed. The fitting procedure as such is simple but becomes difficult in multi-dimensional nonlinearities if the controlling voltages correlate strongly. In this thesis the solvability and reliability of the fitting procedure is increased by numerical operations, model-degree reduction and by using different excitations. A simplified Volterra method is used to calculate the distortion contributions by using the fitted model. The overall distortion is analysed by calculating the voltage response of the contributions of each nonlinearity to the terminal nodes of the device by the use of linear transfer functions of the circuit. The componentwise analysis is performed by phasor presentation enabling the cancelling mechanisms to be seen. The proposed technique is implemented on top of harmonic balance simulation in an APLAC circuit simulator in which extensive distortion simulations are performed. The technique relies on the existing device model and thus the fitted model can be only as accurate as the particular simulation model. However, two different RF PAs are analysed that show a good agreement between measurements and simulations. The proposed technique is verified with several test cases including amplitude dependent amplitude and phase distortion, intermodulation distortion sweet spots, bandwidth dependent memory effects and impedance optimization. The main finding of the detailed analysis is that the distortion is a result of several cancelling mechanisms. In general, cubic nonlinearity of transconductance is dominating the in-band distortion but is cancelled by the 2nd-degree nonlinearity that is mixed to the fundamental band from envelope and 2nd harmonic bands that is usually the main cause of memory effects.
5

Analysis, measurement and cancellation of the bandwidth and amplitude dependence of intermodulation distortion in RF power amplifiers

Vuolevi, J. (Joel) 05 October 2001 (has links)
Abstract The main emphasis in modern RF power amplifier (PA) research is on improving linearity while at the same time maintaining reasonably good efficiency, for which purpose external linearization in the form of feedforward or predistortion is often used. Linearity and linearization can be considered from both a fundamental signal (amplitude and phase conversions, AM-AM &amp; AM-PM) and an intermodulation distortion (IMD) regeneration point of view, and since a study of intermodulation gives more information on the behaviour of an amplifier, linearity is studied in this thesis by analysing the amplitude and phase of IM components under varying signal conditions, i.e. as functions of temperature, modulation bandwidth and amplitude. To study the behaviour of IM components analytically, a Volterra model including electro-thermal distortion mechanisms is developed and a simulation technique is introduced to determine how easily the amplifier can be linearized. An S-parameter characterization method for extracting the Volterra model and the simulation model is developed, and the amplitude and phase dependences of the IM components are shown by means of measurements performed by a novel technique developed here. The results show that the behaviour of IM components is more complicated than had commonly been expected. Three techniques are developed for eliminating the frequency dependence of IM components, impedance optimization, envelope filtering and envelope injection. In the envelope injection technique, a low frequency envelope signal is added to the input of the amplifier in order to improve both the bandwidth and amplitude range of the memoryless predistortion. The functionality of envelope injection is demonstrated by Volterra calculations, simulations and measurements, and the technique is applied to 1W, 1.8 GHz common-emitter BJT and common-source MESFET amplifiers. IM cancellation better than 20 dB is achieved over a wide range of bandwidths and amplitudes. It is concluded that an inherently linear amplifier is not necessarily easy to linearize any further using external techniques, but that the part of the distortion that varies with bandwidth and amplitude can be cancelled out using envelope injection and the remaining memoryless distortion by means of a simple polynomial RF predistorter. This results in good cancellation of distortion, and since both envelope injection and RF predistortion consume little power, both good efficiency and linearity can be achieved.
6

Constant Conduction Angle Biasing for Class C Monolithic RF Power Amplifiers

Rai, Gursewak Singh 01 November 2012 (has links)
In modern wireless communication systems, a base station typically serves a few hundred users within its cell coverage. To combat the near-far problem – the situation where a nearby user’s strong cellular signal masks the cellular signal of a faraway user – base stations continually enforce power control. That is, nearby users must lower their transmit power. In CDMA technology, power control can be as large as 70-80dB. At low power outputs, this greatly impacts the performance of the RF power amplifier (PA) in the cellular device. For small RF drives, the magnitude of the output RF current approaches the magnitude of the DC current and thus the efficiency suffers. Operating the RF PA in class C operation improves the efficiency, but results in poor linearity. Several methods of so-called dynamic biasing have been proposed. These strategies entail lowering the bias of the PA as the RF drive increases. The proposed methods, however, fail to explain how to achieve linearity and low third-order intermodulation distortion. Additionally, the methods utilize open-loop implementations. This work presents a novel dynamic biasing topology that results in a much improved linear class C PA. The topology utilizes a closed loop that cleverly senses the operating conditions of the "power device." Particularly, the loop operates on the principle of keeping the conduction angle remarkably constant and thereby ensuring linearity. The work details a thorough design methodology that should provide assistance to a designer wanting to implement the topology in an RF integrated circuit. Agilent ADS simulations and laboratory results from a functional PCB prototype bring merit to the topology.
7

CMOS linear RF power amplifier with fully integrated power combining transformer / Um amplificador de potência RFCMOS linear com combinador de potência totalmente integrado

Guimarães, Gabriel Teófilo Neves January 2017 (has links)
Este trabalho apresenta o projeto de um amplificador de potência (PA) de rádio-frequência (RF) linear em tecnologia complementar metal-oxido silício (CMOS). Nele são analisados os desafios encontrados no projeto de PAs CMOS assim como soluções encontradas no estado-da-arte. Um destes desafios apresentados pela tecnologia é a baixa tensão de alimentação e passivos com alta perda, o que limita a potência de saída e a eficiência possível de ser atingida com métodos tradicionais de projeto de PA e suas redes de transformação de impedância. Este problema é solucionado através do uso de redes de combinação de impedância integradas, como a usada neste trabalho chamada transformador combinador em série (SCT). Os problemas com o uso de tecnologia CMOS se tornam ainda mais críticos para padrões de comunicação que requerem alta linearidade como os usados para redes sem-fio locais (WLAN) ou padrões de telefonia móvel 3G e 4G. Tais protocolos requerem que o PA opere em uma potência menor do que seu ponto de operação ótimo, degradando sua eficiência. Técnicas de linearização como pré-distorção digital são usadas para aumentar a potência média transmitida. Uma ténica analógica de compensação de distorção AM-PM através da linearização da capacitância de porta dos transistores é usada neste trabalho. O processo de projeto é detalhado e evidencia as relações de compromisso em cada passo, particularmente o impacto da terminação de harmônicos e a qualidade dos passivos na rede de transformação de carga. O projeto do SCT é otimizado para sintonia da impedância de modo comum que é usada para terminar o segundo harmonico de tensão do amplificador. O amplificador projetado tem um único estágio devido a área do chip ser limitada a 1:57 x 1:57 mm2, fato que impacta seu desempenho. O PA foi analisado através de simulação numérica sob várias métricas. Ele atinge uma potência máxima de saída de 24:4 dBm com uma eficiência de dreno de 24:53% e Eficiência em adição de potência (PAE) de 22%. O PA possui uma curva de ganho plana em toda faixa ISM de 2.4 GHz, com magnitude de 15:8 0:1dB. O PA tem um ponto de compressão de OP1dB = 20:03 dBm e o sinal tem um defasamento não-linear de = 1:2o até esta potência de saída. Um teste de intermodulação de dois tons com potência 3dB abaixo do OP1dB tem como resultado uma relação entre intermodulação de terceira ordem e fundamental de IMD3 = 24:22 dB, e de quinta ordem inferior e superior e fundamental de IMD5Inferior = 48:16 dB e IMD5Superior = 49:8 dB. Por fim, mostra-se que o PA satisfaz os requerimentos para operar no padrão IEEE 802.11g. Ele atinge uma potência média de saída de 15:4 dBm apresentando uma magnitude do vetor erro (EVM) de 5:43%, ou 25:3 dB e satisfazendo a máscara de saída para todos os canais. / This work presents the design of a fully integrated Radio-frequency (RF) linear Power Amplifier( PA) in complementary metal-oxide silicon (CMOS) technology. In this work we analyse the challenges in CMOS PA design as well as the state-of-the-art solutions. One such challenge presented by this technology is the low supply voltage and high-loss passives, which pose severe limits on the output power and efficiency achieved with traditional PA design methods and load impedance transformation networks. This issue is addressed by the use of on-chip, highly efficient power combining networks such as the one in this work: A series combining transformer (SCT). The problem of using CMOS becomes even more critical for recent communications standards that require high transmitter linearity such as the ones used for wireless local area network (WLAN) or 3G and 4G mobile communications. This requirement is such that the PA operate at a high power back-off from its optimum operating point, degrading efficiency. To address this problem linearization techniques such as digital pre-distortion can be used in order to decrease the necessary power back-off. In this work an analog technique of AM-PM distortion compensation is used to linearize the capacitance at the input of the amplifier’s transistors and reduce this type of distortion that severely impacts the error vector magnitude (EVM) of the signal. The design process is detailed and aims to make evident the trade-offs of PA design and particularly the impact of harmonic termination and the quality of passives on the load transformation network, the series combining transformer design is optimized for common-mode impedance tuning used for 2nd harmonic termination. The circuit has only a single amplifying stage due to its area being limited to 1:57 x 1:57 mm2 and the design is very constrained by this fact. The PA simulated performance is analyzed under various metrics. It achieves a simulated maximum output power of 24:4 dBm with a drain efficiency of 24:53% and power added efficiency (PAE) of 22%. The PA has a very flat power gain of 15:8 0:1 dB throughout the 2.4 GHz industrial, scientific and medical (ISM) band and is unconditionally stable with 4:9. The PA has a compression point of OP1dB = 20:03 dBm and the signal has a non-linear phase shift of = 1:2o up to this output power. A two-tone intermodulation test with 3dB back-off from OP1dB has a ratio of third-order intermodulation to fundamental of IMD3 = 24:22 dB, and lower and upper fifth order intermodulation to fundamental of IMD5Lower = 48:16 dB and IMD5Upper = 49:8 dB. Finally the PA is shown to satisfy the requirements for operation within the institute of electrical and electronic engineers (IEEE) 802.11g standard. It achieves an average output power of 15:4 dBm while having an EVM of 5:43% or 25:3 dB while satisfying the output spectrum mask for all channels.
8

CMOS linear RF power amplifier with fully integrated power combining transformer / Um amplificador de potência RFCMOS linear com combinador de potência totalmente integrado

Guimarães, Gabriel Teófilo Neves January 2017 (has links)
Este trabalho apresenta o projeto de um amplificador de potência (PA) de rádio-frequência (RF) linear em tecnologia complementar metal-oxido silício (CMOS). Nele são analisados os desafios encontrados no projeto de PAs CMOS assim como soluções encontradas no estado-da-arte. Um destes desafios apresentados pela tecnologia é a baixa tensão de alimentação e passivos com alta perda, o que limita a potência de saída e a eficiência possível de ser atingida com métodos tradicionais de projeto de PA e suas redes de transformação de impedância. Este problema é solucionado através do uso de redes de combinação de impedância integradas, como a usada neste trabalho chamada transformador combinador em série (SCT). Os problemas com o uso de tecnologia CMOS se tornam ainda mais críticos para padrões de comunicação que requerem alta linearidade como os usados para redes sem-fio locais (WLAN) ou padrões de telefonia móvel 3G e 4G. Tais protocolos requerem que o PA opere em uma potência menor do que seu ponto de operação ótimo, degradando sua eficiência. Técnicas de linearização como pré-distorção digital são usadas para aumentar a potência média transmitida. Uma ténica analógica de compensação de distorção AM-PM através da linearização da capacitância de porta dos transistores é usada neste trabalho. O processo de projeto é detalhado e evidencia as relações de compromisso em cada passo, particularmente o impacto da terminação de harmônicos e a qualidade dos passivos na rede de transformação de carga. O projeto do SCT é otimizado para sintonia da impedância de modo comum que é usada para terminar o segundo harmonico de tensão do amplificador. O amplificador projetado tem um único estágio devido a área do chip ser limitada a 1:57 x 1:57 mm2, fato que impacta seu desempenho. O PA foi analisado através de simulação numérica sob várias métricas. Ele atinge uma potência máxima de saída de 24:4 dBm com uma eficiência de dreno de 24:53% e Eficiência em adição de potência (PAE) de 22%. O PA possui uma curva de ganho plana em toda faixa ISM de 2.4 GHz, com magnitude de 15:8 0:1dB. O PA tem um ponto de compressão de OP1dB = 20:03 dBm e o sinal tem um defasamento não-linear de = 1:2o até esta potência de saída. Um teste de intermodulação de dois tons com potência 3dB abaixo do OP1dB tem como resultado uma relação entre intermodulação de terceira ordem e fundamental de IMD3 = 24:22 dB, e de quinta ordem inferior e superior e fundamental de IMD5Inferior = 48:16 dB e IMD5Superior = 49:8 dB. Por fim, mostra-se que o PA satisfaz os requerimentos para operar no padrão IEEE 802.11g. Ele atinge uma potência média de saída de 15:4 dBm apresentando uma magnitude do vetor erro (EVM) de 5:43%, ou 25:3 dB e satisfazendo a máscara de saída para todos os canais. / This work presents the design of a fully integrated Radio-frequency (RF) linear Power Amplifier( PA) in complementary metal-oxide silicon (CMOS) technology. In this work we analyse the challenges in CMOS PA design as well as the state-of-the-art solutions. One such challenge presented by this technology is the low supply voltage and high-loss passives, which pose severe limits on the output power and efficiency achieved with traditional PA design methods and load impedance transformation networks. This issue is addressed by the use of on-chip, highly efficient power combining networks such as the one in this work: A series combining transformer (SCT). The problem of using CMOS becomes even more critical for recent communications standards that require high transmitter linearity such as the ones used for wireless local area network (WLAN) or 3G and 4G mobile communications. This requirement is such that the PA operate at a high power back-off from its optimum operating point, degrading efficiency. To address this problem linearization techniques such as digital pre-distortion can be used in order to decrease the necessary power back-off. In this work an analog technique of AM-PM distortion compensation is used to linearize the capacitance at the input of the amplifier’s transistors and reduce this type of distortion that severely impacts the error vector magnitude (EVM) of the signal. The design process is detailed and aims to make evident the trade-offs of PA design and particularly the impact of harmonic termination and the quality of passives on the load transformation network, the series combining transformer design is optimized for common-mode impedance tuning used for 2nd harmonic termination. The circuit has only a single amplifying stage due to its area being limited to 1:57 x 1:57 mm2 and the design is very constrained by this fact. The PA simulated performance is analyzed under various metrics. It achieves a simulated maximum output power of 24:4 dBm with a drain efficiency of 24:53% and power added efficiency (PAE) of 22%. The PA has a very flat power gain of 15:8 0:1 dB throughout the 2.4 GHz industrial, scientific and medical (ISM) band and is unconditionally stable with 4:9. The PA has a compression point of OP1dB = 20:03 dBm and the signal has a non-linear phase shift of = 1:2o up to this output power. A two-tone intermodulation test with 3dB back-off from OP1dB has a ratio of third-order intermodulation to fundamental of IMD3 = 24:22 dB, and lower and upper fifth order intermodulation to fundamental of IMD5Lower = 48:16 dB and IMD5Upper = 49:8 dB. Finally the PA is shown to satisfy the requirements for operation within the institute of electrical and electronic engineers (IEEE) 802.11g standard. It achieves an average output power of 15:4 dBm while having an EVM of 5:43% or 25:3 dB while satisfying the output spectrum mask for all channels.
9

CMOS linear RF power amplifier with fully integrated power combining transformer / Um amplificador de potência RFCMOS linear com combinador de potência totalmente integrado

Guimarães, Gabriel Teófilo Neves January 2017 (has links)
Este trabalho apresenta o projeto de um amplificador de potência (PA) de rádio-frequência (RF) linear em tecnologia complementar metal-oxido silício (CMOS). Nele são analisados os desafios encontrados no projeto de PAs CMOS assim como soluções encontradas no estado-da-arte. Um destes desafios apresentados pela tecnologia é a baixa tensão de alimentação e passivos com alta perda, o que limita a potência de saída e a eficiência possível de ser atingida com métodos tradicionais de projeto de PA e suas redes de transformação de impedância. Este problema é solucionado através do uso de redes de combinação de impedância integradas, como a usada neste trabalho chamada transformador combinador em série (SCT). Os problemas com o uso de tecnologia CMOS se tornam ainda mais críticos para padrões de comunicação que requerem alta linearidade como os usados para redes sem-fio locais (WLAN) ou padrões de telefonia móvel 3G e 4G. Tais protocolos requerem que o PA opere em uma potência menor do que seu ponto de operação ótimo, degradando sua eficiência. Técnicas de linearização como pré-distorção digital são usadas para aumentar a potência média transmitida. Uma ténica analógica de compensação de distorção AM-PM através da linearização da capacitância de porta dos transistores é usada neste trabalho. O processo de projeto é detalhado e evidencia as relações de compromisso em cada passo, particularmente o impacto da terminação de harmônicos e a qualidade dos passivos na rede de transformação de carga. O projeto do SCT é otimizado para sintonia da impedância de modo comum que é usada para terminar o segundo harmonico de tensão do amplificador. O amplificador projetado tem um único estágio devido a área do chip ser limitada a 1:57 x 1:57 mm2, fato que impacta seu desempenho. O PA foi analisado através de simulação numérica sob várias métricas. Ele atinge uma potência máxima de saída de 24:4 dBm com uma eficiência de dreno de 24:53% e Eficiência em adição de potência (PAE) de 22%. O PA possui uma curva de ganho plana em toda faixa ISM de 2.4 GHz, com magnitude de 15:8 0:1dB. O PA tem um ponto de compressão de OP1dB = 20:03 dBm e o sinal tem um defasamento não-linear de = 1:2o até esta potência de saída. Um teste de intermodulação de dois tons com potência 3dB abaixo do OP1dB tem como resultado uma relação entre intermodulação de terceira ordem e fundamental de IMD3 = 24:22 dB, e de quinta ordem inferior e superior e fundamental de IMD5Inferior = 48:16 dB e IMD5Superior = 49:8 dB. Por fim, mostra-se que o PA satisfaz os requerimentos para operar no padrão IEEE 802.11g. Ele atinge uma potência média de saída de 15:4 dBm apresentando uma magnitude do vetor erro (EVM) de 5:43%, ou 25:3 dB e satisfazendo a máscara de saída para todos os canais. / This work presents the design of a fully integrated Radio-frequency (RF) linear Power Amplifier( PA) in complementary metal-oxide silicon (CMOS) technology. In this work we analyse the challenges in CMOS PA design as well as the state-of-the-art solutions. One such challenge presented by this technology is the low supply voltage and high-loss passives, which pose severe limits on the output power and efficiency achieved with traditional PA design methods and load impedance transformation networks. This issue is addressed by the use of on-chip, highly efficient power combining networks such as the one in this work: A series combining transformer (SCT). The problem of using CMOS becomes even more critical for recent communications standards that require high transmitter linearity such as the ones used for wireless local area network (WLAN) or 3G and 4G mobile communications. This requirement is such that the PA operate at a high power back-off from its optimum operating point, degrading efficiency. To address this problem linearization techniques such as digital pre-distortion can be used in order to decrease the necessary power back-off. In this work an analog technique of AM-PM distortion compensation is used to linearize the capacitance at the input of the amplifier’s transistors and reduce this type of distortion that severely impacts the error vector magnitude (EVM) of the signal. The design process is detailed and aims to make evident the trade-offs of PA design and particularly the impact of harmonic termination and the quality of passives on the load transformation network, the series combining transformer design is optimized for common-mode impedance tuning used for 2nd harmonic termination. The circuit has only a single amplifying stage due to its area being limited to 1:57 x 1:57 mm2 and the design is very constrained by this fact. The PA simulated performance is analyzed under various metrics. It achieves a simulated maximum output power of 24:4 dBm with a drain efficiency of 24:53% and power added efficiency (PAE) of 22%. The PA has a very flat power gain of 15:8 0:1 dB throughout the 2.4 GHz industrial, scientific and medical (ISM) band and is unconditionally stable with 4:9. The PA has a compression point of OP1dB = 20:03 dBm and the signal has a non-linear phase shift of = 1:2o up to this output power. A two-tone intermodulation test with 3dB back-off from OP1dB has a ratio of third-order intermodulation to fundamental of IMD3 = 24:22 dB, and lower and upper fifth order intermodulation to fundamental of IMD5Lower = 48:16 dB and IMD5Upper = 49:8 dB. Finally the PA is shown to satisfy the requirements for operation within the institute of electrical and electronic engineers (IEEE) 802.11g standard. It achieves an average output power of 15:4 dBm while having an EVM of 5:43% or 25:3 dB while satisfying the output spectrum mask for all channels.
10

Green flexible RF for 5G

Hussaini, Abubakar S., Abdulraheem, Yasir I., Voudouris, Konstantinos N., Mohammed, Buhari A., Abd-Alhameed, Raed, Mohammed, Husham J., Elfergani, Issa T., Abdullah, Abdulkareem S., Makris, D., Rodriguez, Jonathan, Noras, James M., Nche, C., Fonkam, M. January 2015 (has links)
No / 5th Generation mobile networks (5G) and mobile communications technologies beyond 2020 will need to be energy aware so as to support services that are likely to be intelligent and bandwidth hungry, as well as to support multi-mode operation (LTE, LTE+, HSDPA, 3G among others) in a HetNet environment. This imposes stringent design requirements on the RF transceiver, a key consumer of power in networks today. This chapter will investigate the key RF subsystems forming part of the 5G RF transceiver, where energy efficiency and full radio flexibility are at the forefront of system design. In particular, we target advanced designs on antenna systems, RF power amplifiers and the challenges facing cross-talk in MIMO architectures.

Page generated in 0.0871 seconds