• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression and characterisation of a novel poly(A)-binding protein, PABP5

Anderson, Ross Calley January 2010 (has links)
The poly(A)-binding proteins (PABPs) are a family of eukaryotic RNA-binding proteins with key roles in mRNA translation and stability. The molecular function of PABPs have been largely revealed through study of the prototypical cytoplasmic poly(A)-binding protein, PABP1. Thus, little is known regarding other PABP family members. PABP5 contains four RNA-recognition motifs characteristic of the cytoplasmic PABPs yet is structurally distinct as it lacks a portion of the C-terminus. This region contains a proline-rich section linked to a globular domain that facilitates a number of protein-protein interactions. To date, little information has been presented regarding the expression of PABP5 and there is no data pertaining to the function of this protein, despite being mapped to a region of the X-chromosome associated with human pathological conditions. In this thesis, I present the first data documenting the expression of PABP5 within mouse tissues, and find it to be expressed at the highest levels within the brain, ovary, and testis. The limited data available suggests that gonads may be the only tissue to contain all PABPs therefore I additionally describe the expression of PABP1 and PABP4 to ascertain their cellular distribution within these tissues. This revealed that PABPs have overlapping yet distinct expression patterns in mouse gonads. The distinct structure of PABP5 suggested that its function may vary from PABP1. Characterisation of its activities in translational regulation was therefore investigated. When tethered to a reporter mRNA PABP5 had limited translational stimulatory activity, and in addition could not be isolated via m7G cap chromatography and failed to interact with translation initiation factors including eIF4G and PAIP-1. These factors interact with PABP1 to positively promote translation, implying that PABP5 function in translational regulation differs from other PABPs investigated. Examining why PABP5 failed to display translational stimulatory activity also revealed an interaction with the negative regulator of translation, PAIP-2. In summary, I present the first description of PABP5 cellular localisation, and have gone some way towards elucidating the molecular function of this uncharacterised protein.
2

RNA Recognition and Regulation of the AU-rich RNA Binding Proteins: HuR, TTP and BRF1

Friedersdorf, Matthew Burk January 2011 (has links)
<p>Posttranscriptional gene expression is controlled and coordinated by RNA binding proteins (RBPs), many of which recognize specific RNAs through cis-regulatory RNA elements. One of the most highly studied classes of cis-regulatory RNA elements is the AU-rich elements (AREs). AREs are bound by a class of RBPs called ARE binding proteins (ARE-BPs), of which there are over a dozen in humans including HuR, tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF1 and BRF2). TTP, BRF1 and BRF2 belong to a family of tandem C3H zinc finger proteins that destabilize ARE-containing mRNAs. HuR acts to enhance the stability and translation of ARE-containing mRNAs, a function that is rare among ARE-BPs. While each of these ARE-BPs regulates the expression of ARE-containing mRNAs, some ARE-BPs themselves are also encoded by ARE-containing mRNAs, raising the possibility that each of these ARE-BPs may regulate one another's expression. In order to determine how these ARE-BPs influence each others expression and how this affects the regulation of global gene expression programs we have focused on three different aspects of these ARE-BP networks: control, response to stimuli, and global effects.</p><p>To address of network control of ARE-BPs we have focused on how HuR regulates a network of mRNAs including TTP, BRF1 and HuR's own mRNA. We demonstrate that HuR can bind to TTP's, BRF1's and its own mRNA. Furthermore, by employing overexpression and siRNA knockdown approaches we demonstrate that these mRNAs and their corresponding 3'UTR luciferase reporters are resilient to fluctuations in HuR levels and that the degree of this resiliency is cell type and condition specific.</p><p>To address the temporal responses within an ARE-BP network we focused on how each of the members of the TTP family of ARE-BPs reacts following the induction of the other family members by using epidermal growth factor (EGF) stimulation. Here we show that induction of TTP family member mRNAs during EGF stimulation is partially attributable to changes in mRNA stability. Furthermore, we also show that TTP and BRF1 are able to bind each of the TTP family member mRNAs and subsequently affect their expression by altering their mRNA degradation rates. In addition, we demonstrate that the unique temporal induction patterns of the TTP family member RBPs is correlated with the EGF stimulated induction of TTP-bound mRNAs, suggesting that a network comprised of TTP family members is able to influence the timing of complex gene expression patterns. </p><p>Finally, to address the influence of these networks on regulation of global gene expression programs we have focused on how HuR recognizes AREs and whether it can globally recognize multiple classes of ARE-containing mRNAs, including the canonical class of AREs recognized by the TTP family members. To investigate how the three RNA recognition motifs (RRMs) of HuR contribute to ARE recognition we generated a series of RRM point mutants and test their ability to disrupt RNA recognition of each of the RRMs. To identify different classes of ARE-containing mRNAs we examined these mutants with a global RNA binding site detection method called photoactivatable ribonucleoside crosslinking immunoprecipitation (PAR-CLIP). Together these techniques suggest that the RRMs of HuR cooperate to recognize mRNA targets and that HuR's ability to bind RNA is coupled to the cellular distribution of HuR, and thus, are important in its role for regulating expression of bound mRNAs. </p><p>Together these studies indicate that ARE-BP posttranscriptional networks are highly interconnected and display complex regulatory interactions depending on cell type and stimuli. Furthermore, these networks can create complex behaviors such as timing of expression events or resiliency to fluctuations in protein levels. Finally, the components of these ARE-BP networks target partially overlapping sets of mRNAs to impact global gene expression patterns that ultimately coordinate the cellular responses to external stimuli.</p> / Dissertation
3

Biophysical studies of an expanded RNA recognition motif from the Bruno protein

Lyon, Angeline Marie 19 January 2011 (has links)
RNA recognition motifs (RRMs) are a ubiquitous class of proteins which bind RNA in a sequence-specific fashion, often with high affinity. The mechanisms through which this single protein domain recognizes diverse RNA sequences is not fully understood. High-resolution three-dimensional structures are particularly important in understanding the structural features required for RNA recognition and binding. This work presents the structure of an expanded RRM domain from the Drosophila melanogaster Bruno protein. The Bruno protein is involved in establishing proper body patterning during development. This is accomplished through the translational repression of several mRNAs, in particular, the oskar mRNA. Previous work has identified an expanded RRM domain within the Bruno protein. This RRM requires an additional forty amino acids prior to the start of the canonical RRM domain for high affinity RNA binding. The protein was found to contain a canonical RRM domain comprised of four anti-parallel [beta] strands and two [alpha] helices. The RRM is preceded by a ten amino acid loop that interacts with [alpha]₁ and [beta]₂, while the remaining amino acids are flexible in solution. Interestingly, the deletion of these residues does not alter the fold or stability of the RRM domain. Thus, these additional residues must be involved in RNA binding, as they are not required for structure. From these studies, the Bruno RRM represents a new example of protein features required for recognition and high affinity binding of RNA. / text
4

Regulation of mammalian 3' slpice site recognition

Corrionero Saiz, Ana 16 December 2010 (has links)
Alternative splicing provides the cell the ability to generate, from a single gene, multiple protein isoforms, sometimes with different or even antagonistic functions. This process is tightly regulated and alterations in the accurate balance of alternatively spliced mRNAs are a common cause of disease. The main objective of this thesis has been to understand the molecular mechanisms underlying disease-causing defective splicing. Skipping of Fas death receptor exon 6 leads to decreased Fas-ligand induced apoptosis. We have studied how this event is promoted by a mutation at the 3’ splice site and by the proto-oncogene SF2, leading to Autoimmune Lymphoproliferative Syndrome and possibly contributing to tumor progression, respectively. Moreover, we have determined the mechanism by which an antitumor drug, Spliceostatin A, alters 3’ splice site recognition and affects alternative splicing. This thesis underscores the importance of pre-mRNA splicing in disease and how the study of disease-causing aberrant splicing can be used as a tool to understand splicing mechanisms and vice versa. / El processament alternatiu del pre-ARNm proporciona a la cèl•lula l’habilitat de generar, a partir d’un únic gen, proteïnes amb funcions diferents i, fins i tot, antagòniques. Aquest procés està altament regulat i desequilibris en l’abundància de les diferent isoformes són causes comunes de malaltia. L’objectiu principal d’aquesta tesi ha estat entendre el mecanisme molecular a través del qual problemes en el processament del pre-ARNm causen malalties. L’exclusió de l’exó 6 del receptor de mort cel•lular Fas condueix a una disminució de l’apoptosi en resposta al lligand de Fas. Hem estudiat com una mutació al lloc de processament 3’ d’aquest exó i el proto-oncogén SF2 promouen aquest patró, causant el síndrome autoimmune lifoproliferatiu i possiblement contribuint a la progressió tumorogènica, respectivament. A més, hem estudiat el mecanisme pel qual la droga antitumoral Spliceostatin A altera el reconeixement del lloc de processament 3’ i causa canvis en el processament alternatiu de diversos gens. Aquesta tesi posa en evidència la importancia del processament del pre-ARNm en malalties i com l’estudi de mutacions que alteren aquest procés i són causa de malaties pot ser utilitzat con una eina per entendre el mecanisme d’aquest processament i viceversa.
5

Synthese und Screening von Inhibitoren der mikroRNA-Reifung

Dojahn, Claudine 03 May 2013 (has links)
Das Ziel dieser Arbeit war die Synthese niedermolekularer Verbindungen, die an die prä-miRNA binden und dadurch die Reifung zur miRNA inhibieren. Daher sollten die RNA-Binder 2-Desoxystreptamin sowie Neamin mit Alkinen funktionalisiert und durch Kupfer-katalysierte Azid-Alkin 1,3-dipolare Cycloaddition (CuAAC) mit verschiedenen bivalenten Aziden verknüpft werden. Im Rahmen dieses Projekts wurde der synthetische Zugang zu den benötigten Alkin- sowie Azid-funktionalisierten Grundbausteinen optimiert. Ferner wurde ein effektives und zuverlässiges Protokoll für die CuAAC erarbeitet, welches es ermöglichte, 88 Testsubstanzen in guter Ausbeute und hoher Reinheit zu isolieren. Anschließend wurde die Substanzbibliothek in einem BRCA-Reifungsassay unter kompetitiven Bedingungen auf die Inhibition der miRNA-Reifung getestet. Dabei wurden mehrere potente Inhibitoren der miRNA-Reifung mit IC50-Werten von bis zu 0.5 µM identifiziert. Der zweite Schwerpunkt dieser Arbeit lag auf der Etablierung einer chemo-enzymatische RNA-Funktionalisierungsstrategie um prä-miRNA-Sonden herzustellen: In-vitro-Transkriptionen mit der T7-RNA-Polymerase sowie Ligationen mit der T4 RNA Ligase 1 waren das Fundament der enzymatischen RNA-Synthese, während die Funktionalisierung der RNA durch CuAAC erzielt wurde. Dafür wurden die neuen Verbindungen O-(5‘-Guanosin)-O-propargylmonophosphat sowie 3‘,5‘-O,O-Bisphosphat-5-ethinyluridin synthetisiert, durch in-vitro-Tran¬skription an das 5‘-Ende von prä-miRNAs eingeführt und anschließend durch CuAAC mit einem Fluoreszenzlöscher modifiziert. Das Uridinbisphosphat wurde durch CuAAC mit einem Fluorophor markiert und anschließend effizient mit der T4 RNA Ligase 1 an das 3‘-Ende verschiedener prä-miRNAs ligiert. Darüber hinaus war es auch möglich, das Alkin-modifizierte Uridinbisphosphat an das 3‘-Ende von prä-miRNAs zu ligieren, dieses durch eine zweite Ligation an eine definierte interne Position zu verschieben und abschließend durch CuAAC zu funktionalisieren. / The objective of this work was the synthesis of small molecules, which bind to pre-miRNAs to prevent their maturation to fully active miRNAs. To create a substance library of bivalent inhibitors, the RNA binding motifs 2-deoxystreptamine as well as neamine were alkyne modified and linked with several bisazides via a copper catalyzed alkyne-azide cycloaddition (CuAAC). Hence, optimized syntheses of the basic building blocks along with an effective and reliable CuAAC-protocol were established. 88 test substances were isolated in good yield and high purity. Finally they were analyzed with regard to their potential to selectively inhibit the miRNA maturation. For this purpose, the assay was performed under competitive conditions with a set of two pre-miRNA-pairs. The initial screening revealed several inhibitors with IC50-values in the lower µM range. The second focus of this work was on the development of a synthetic access to alkyne modified ribonucleotides to establish a chemo-enzymatic functionalization strategy for RNAs using in-vitro-transcription, ligation and CuAAC. In this context, the syntheses of 3‘,5‘-O,O-bisphosphate-5-ethinyl uridine and O-(5‘-guanosine)-O-propargyl monophos-phate are described for the first time. The guanosine monophosphate was used as transcription starter to address the 5’-end of RNA and was consecutively labeled with an azido-tagged quencher. The uridine bisphosphate was conjugated with a fluorophor and introduced to the 3’-end of RNAs by T4 RNA ligase 1. Moreover, the uridine bisphosphate can be ligated to the 3’-end without a fluorophor attached, to serve as a connecting point for a further ligation with an oligonucleotide of any length. Thereby, the former terminal alkynylated uridine was shifted to a defined internal position by successive enzymatic reactions and was successfully derivatized with a fluorophor by CuAAC.
6

Involvement of the Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF) in the Hepatitis Delta Virus (HDV) RNA-Templated Transcription

Zhang, Da Jiang 13 May 2014 (has links)
Hepatitis delta virus (HDV) is the smallest known mammalian RNA virus, containing a genome of ~ 1700 nt. Replication of HDV is extremely dependent on the host transcription machinery. Previous studies indicated that RNA polymerase II (RNAPII) directly binds to and forms an active preinitiation complex on the right terminal stem-loop fragment (R199G) of HDV genomic RNA, and that the polypyrimidine tract-binding protein-associated splicing factor (PSF) directly binds to the same region. Further studies demonstrated that PSF also binds to the carboxyl-terminal domain (CTD) of RNAP II. In my thesis, co-immunoprecipitation assays were performed to show that PSF stimulates the interaction of RNAPII with R199G. Results of co-immunoprecipitation experiments also suggest that both the RNA recognition motif 2 (RRM2) and N-terminal proline-rich region (PRR) of PSF are required for the interaction between PSF and RNAPII, while the two RNA recognition motifs (RRM1 and RRM2) might be required for the interaction of PSF with R199G. Furthermore, in vitro run-off transcription assays suggest that PSF facilitates the HDV RNA transcription from the R199G template. Together, the above experiments suggest that PSF might act as a transcription factor for the RNAPII transcription of HDV RNA by linking the CTD of RNAPII and the HDV RNA promoter. My experiments provide a better understanding of the mechanism of HDV RNA-dependent transcription by RNAP II.
7

Involvement of the Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF) in the Hepatitis Delta Virus (HDV) RNA-Templated Transcription

Zhang, Da Jiang January 2014 (has links)
Hepatitis delta virus (HDV) is the smallest known mammalian RNA virus, containing a genome of ~ 1700 nt. Replication of HDV is extremely dependent on the host transcription machinery. Previous studies indicated that RNA polymerase II (RNAPII) directly binds to and forms an active preinitiation complex on the right terminal stem-loop fragment (R199G) of HDV genomic RNA, and that the polypyrimidine tract-binding protein-associated splicing factor (PSF) directly binds to the same region. Further studies demonstrated that PSF also binds to the carboxyl-terminal domain (CTD) of RNAP II. In my thesis, co-immunoprecipitation assays were performed to show that PSF stimulates the interaction of RNAPII with R199G. Results of co-immunoprecipitation experiments also suggest that both the RNA recognition motif 2 (RRM2) and N-terminal proline-rich region (PRR) of PSF are required for the interaction between PSF and RNAPII, while the two RNA recognition motifs (RRM1 and RRM2) might be required for the interaction of PSF with R199G. Furthermore, in vitro run-off transcription assays suggest that PSF facilitates the HDV RNA transcription from the R199G template. Together, the above experiments suggest that PSF might act as a transcription factor for the RNAPII transcription of HDV RNA by linking the CTD of RNAPII and the HDV RNA promoter. My experiments provide a better understanding of the mechanism of HDV RNA-dependent transcription by RNAP II.
8

Engineering post-transcriptional regulation of gene expression with RNA-binding proteins

Dolcemascolo, Roswitha 23 January 2024 (has links)
[ES] La biología sintética tiene como objetivo diseñar y construir nuevos sistemas biológicos con funciones deseadas. Los circuitos basados en el control transcripcional han tenido preponderancia en este campo tras el trabajo pionero del toggle switch y del repressilator. Sin embargo, para avanzar en la creación de tecnologías transformadoras que utilicen circuitos genéticos sintéticos, es esencial una combinación de mecanismos de control confiables en todo el flujo de la información genética. Esta combinación es necesaria para alcanzar el nivel de integrabilidad y complejidad funcional observado en la naturaleza. En tal sentido, recientemente han ganado atención los circuitos basados en regulación postranscripcional. En particular, se ha aprovechado la gran programabilidad de ARN para crear circuitos reguladores para la biodetección de señales ambientales o para controlar la vía metabólica en la bioproducción. En esta tesis, por el contrario, proponemos explotar las proteínas de unión a ARN para diseñar circuitos sintéticos que operen a nivel de traducción en la bacteria Escherichia coli. Esta tesis pretende estudiar como surge y se propaga el ruido cuando la expresión genética está regulada por un factor de traducción, y la ampliación de la caja de herramientas de la biología sintética con una nueva caracterización de proteínas de unión a ARN adecuadas. Por un lado, hemos diseñado un circuito de control postrancripcional utilizando la proteína de cápside del fago MS2. Mediante una meticulosa monitorización a nivel unicelular tanto del regulador como del gen regulado, hemos cuantificado el comportamiento dinámico del sistema, así como su estocasticidad. Si bien los esfuerzos anteriores se centraron en comprender la propagación del ruido en las regulaciones transcripcionales, el comportamiento estocástico de los genes regulados a nivel de la traducción sigue siendo en gran medida desconocido. Nuestros datos han revelado que un factor de traducción de proteínas ha permitido una fuerte represión a nivel unicelular, ha amortiguado la propagación del ruido de un gen a otro y ha conducido a una sensibilidad no lineal a las perturbaciones globales en la traducción. Estos descubrimientos han mejorado significativamente nuestra comprensión de la expresión genética estocástica y han proporcionado principios de diseño fundamentales para aplicaciones de biología sintéticas. Por otro lado, aprovechamos el motivo de reconocimiento de ARN (RRM), el dominio proteico de unión a ARN mas prevalente en la naturaleza, a pesar de su predominio en los filos eucariotas, para diseñar un sistema de control postranscripcional ortogonal en Escherichia coli. Aprovechando la proteína de unión a ARN de mamífero Musashi-1, que contiene dos RRM canónicos, desarrollamos un circuito sofisticado. Musashi-1 ha funcionado como represor de la traducción alostérico a través de su interacción especifica con la región codificante N-terminal del ARN mensajero, mostrando capacidad de respuesta a los ácidos grasos. La caracterización integral tanto a nivel poblacional como unicelular ha destacado un cambio significativo en la expresión del reportero. Se obtuvieron conocimientos moleculares a través de la cinética de unión in vitro y evaluaciones de funcionalidad in vivo de una serie de mutantes de ARN. Este trabajo ha mostrado la adaptabilidad de la regulación basada en RRM a organismos mas simples, introduciendo una nueva capa regulatoria para el control de la traducción en procariotas y, en ultima instancia, ampliando los horizontes de la manipulación genética. / [CA] La biologia sintètica té per objectiu dissenyar i construir nous sistemes biològics amb funcions desitjades. Els circuits basats en el control transcripcional han tingut preponderancia en aquest camp després del treball pioner del toggle switch i del repressilator. Tot i això, per avançar en la creació de tecnologies transformadres que utilitzin circuits genètics sintètics, és esencial una combinació de mecanismes de control fiables en tot el flux de la información genètica. Aquesta combinació és necessària per assolir el nivel d'integrabilitat i complexitat funcional observat a la natura. En aquest sentit, recentement han guanyat atenció els circuits basats en regulació posttranscripcional. En particular, s'ha aprofitat la gran programabilitat d'ARN per crear circuits reguladors per a la biodetecció de senyals ambientals o per controlar la via metabólica a la bioproducció. En aquesta tesi, per contra, proposem exlotar les proteïnes d'unió a ARN per dissenyar circuits sintètics que operin a nivel de traducció al bacteri Escherichia coli. Aquesta tesi pretén estudiar com sorgeix i es propaga el soroll quan l'expressió genètica està regulada per un factor de traducció, il'ampliació de la caixa d'eines de la biología sintètica amb una nova caracteriació de proteïnes d'unió a ARN adequades. D'una banda, hem dissenyat un circuit de control postranscripcional utilitzant la proteína de càpsid del fag MS2. Mitjançant una meticulosa monitorització a nivel inucel·lular tant del regulador com del gen regulat, hem quantificat el comportament dinàmic del sistema, així com la seva estocasticitat. Tot i que els esforços anteriors es van centrar a comprendre la propagació del soroll en les regulacions transcripcionals, el comportament estocàstic dels gens regulats a nivell de la traducció continua sent en gran mesura desonegut. Les nostres dades han revelat que un factor de traducció de proteïnes ha permès una forta repressió a nivell unicel·lular, ha esmorteït la propagació del soroll d'un gen a un altre i ha conduït a una sensibilitat no lineal a les pertorbacions globals a la traducció. Aquest descobriments han millorat significativament la nostra comprensió de l'expressió genètica estocástica i han proporcionat principis de sisseny fonamentals per a aplicacions de biología sintètiques. D'altra banda, aprofitem el motiu de reconeixement d'ARN (RRM), el domini proteic d'unió a ARN més prevalent a la natura, malgrat el seu predomini als talls eucariotes, per dissenyar un sistema de control posttranscripcional ortogonal a Escherichia coli. Aprofitant la proteína d'unió a ARN de mamífers Musashi-1, que conté dos RRM canònics, hem desenvolupat un circuit sofisticat. Musashi-1 va funcionar com un repressor de la traducció al·lostèric a través de la seva interacció específica amb la regió codificant N-terminal de l'ARN missatger, mostrant capacitat de resposta als àcids grassos. La caracterització integral tant a nivel poblacional com unicèl·lular va destacar un canvi significatiu a l'expressió de l'informador. S'obtingueren coneixements moleculars a través de la cinètica d'unió in vitro i avaluacions de funcionalitat in vivo d'una sèrie de mutants d'ARN. Aquest treball va mostrar l'adaptabilitat de la regulació basada en RRM a organismos més simples, introduint una nova capa regulatòria per al control de la traducció en procariotes i, en darrer terme, ampliant els horitzons de la manipulació genètica. / [EN] Synthetic biology seeks to design and construct new biological systems with desired functions. Circuits based on transcriptional control have been preponderant in the field following the pioneering work of the toggle switch and repressilator. However, to advance the creation of transformative technologies using synthetic genetic circuits, a blend of dependable control mechanisms throughout the genetic information flow is essential. This combination is necessary to attain the level of integrability and functional complexity observed in nature. In this regard, circuits based on post-transcriptional regulation have recently gained attention. In particular, the great programmability of RNA has been exploited to create regulatory circuits for biosensing of environmental signals or for controlling metabolic pathway in bioproduction. In this thesis, in contrast, we propose to exploit RNA-binding proteins to engineer synthetic circuits that operate at the level of translation in the bacterium Escherichia coli. This thesis intends to study how noise emerges and propagates when gene expression is regulated by a translation factor, and the expansion of the synthetic biology toolbox with new characterization of suitable RNA-binding proteins. On the one hand, we engineered a post-transcriptional control circuit using the phage MS2 coat protein. Through meticulous single-cell level monitoring of both the regulator and the regulated gene, we quantified the dynamic behavior of the system, as well as their stochasticity. While previous efforts focused on understanding noise propagation in transcriptional regulations, the stochastic behavior of genes regulated at the translation level remain largely unknown. Our data revealed that a protein translation factor enabled strong repression at the single-cell level, buffered noise propagation from gene to gene, and led to a nonlinear sensitivity to global perturbations in translation. These findings significantly enhanced our understanding of stochastic gene expression and provided foundational design principles for synthetic biology applications. On the other hand, we harnessed the RNA recognition motif (RRM), the most prevalent RNA-binding domain in nature, despite its predominance in eukaryotic phyla, to engineer an orthogonal post-transcriptional control system in Escherichia coli. Leveraging the mammalian RNA-binding protein Musashi-1, which contains two canonical RRMs, we developed a sophisticated circuit. Musashi-1 functioned as an allosteric translation repressor through its specific interactions with the N-terminal coding region of messenger RNA, exhibiting responsiveness to fatty acids. Comprehensive characterization at both population and single-cell levels highlighted a significant fold change in reporter expression. Molecular insights were gleaned through in vitro binding kinetics and in vivo functionality assessments of a series of RNA mutants. This work showcased the adaptability of RRM-based regulation to simpler organisms, introducing a novel regulatory layer for translation control in prokaryotes, ultimately expanding the horizons of genetic manipulation. / Dolcemascolo, R. (2023). Engineering post-transcriptional regulation of gene expression with RNA-binding proteins [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202194

Page generated in 0.0722 seconds