Spelling suggestions: "subject:"clase A"" "subject:"acase A""
11 |
Caractérisation biochimique et structurale des RNases P et MRP chez la levure Saccharomyces cerevisiae / Biochemical and structural characterization of RNases P and MRP in S. cerevisiaeBatisse, Claire 23 January 2013 (has links)
La RNase P est une endoribonucléase responsable de la maturation de l’extrémité 5’ des ARNt prématures. Holoenzyme très conservée, elle est constituée d’une composante ARN formant le noyau catalytique et d’une composante protéique dont le nombre de sous-unités est variable : une protéine chez les bactéries, 5 chez les archées et d’au moins 9 chez les eucaryotes. Les eucaryotes possèdent également une autre endoribonucléase, la RNase MRP dont la composition est proche de la RNase P tant au niveau ribonucléique que protéique mais avec une spécificité de substrat propre. Dans cette étude, nous proposons une méthode originale et spécifique pour purifier la RNase P et la RNase MRP de S. cerevisiae. Grâce à la microscopie électronique et au traitement d’images, nous avons déterminé la première structure de ces deux holoenzymes à une résolution d’environ 1.5 nm. Ces structures révèlent une architecture modulaire commune où les protéines stabilisent la composante ARN et contribuent à l’édification de cavités et de conduits. Les spécificités structurales sont localisées en des positions stratégiques pour l’identification et la coordination du substrat. / Ribonuclease P (RNase P) is an endoribonuclease that cleaves the 5'-leader sequence of pre-tRNAs. RNase P is conserved between all taxonomic kingdoms and consists of a catalytic RNA subunit and protein components of variable size, from one protein in bacteria to 5 proteins in archae and at least 9 proteins in eukaryotic cells. In addition to RNase P, eukaryotes possess the RNase MRP which has a related RNA core and shares 8 proteins subunits with RNase P but with its own substrate specificity. Here, we propose an original method to purify specifically RNase P and RNase MRP from S. cerevisiae. Using electron microscopy and image processing, we solved the first structure of these two holoenzymes at a resolution of about 1.5 nm. We showed that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules.Structural features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence.
|
12 |
Mechanistic insights into the slicing specificity of Argonaute and development of a programmable RNA endonucleaseDayeh, Daniel M., Dayeh January 2018 (has links)
No description available.
|
13 |
Rapid Characterization of Posttranscriptional Modifications in RNA Using Matrix Assisted Laser Desorption Ionization Mass Spectrometry and Matrix Assisted Laser Desorption Ionization Post Source Decay Mass SpectrometryBerhane, Beniam T. 14 May 2003 (has links)
No description available.
|
14 |
Developing Antibacterials Using Cyclic Peptide Mimics of The Protein Subunit of Bacterial RNase PGo, Cecilia S. 02 November 2010 (has links)
No description available.
|
15 |
Novel antiviral mechanism of IFN-stimulated gene 20(ISG20) via translational suppression / Nouveau mécanisme antivirale de l’IFN-stimulated gene 20 (ISG20) par la répression translationalleWu, Nannan 20 May 2016 (has links)
La réponse interféron est une réponse antivirale complexe qui, après la détection de pathogènes par des PRR (récepteurs de motifs associés aux pathogènes), conduit à l’induction de centaines de gènes appelés ISG (gènes stimulés par l’interféron). Dans la littérature, il existe plusieurs ISG capables de s’opposer à l’infection virale ; cependant le rôle antiviral précis d’un grand nombre d’entre eux reste inconnu ou mal caractérisé. Pendant ma thèse, je me suis concentré sur la caractérisation d’ISG20 pendant la réplication de deux virus, VSV et le VIH-1. La protéine ISG20 a été décrite au préalable comme une exonucléase 3’-5’ antivirale en agissant sur la dégradation directe du génome viral. Cependant, la diminution de la quantité d’ARN viraux liée à ISG20 était controversée.Afin de mieux comprendre le mécanisme par lequel ISG20 interfère avec la réplication virale, j’ai construit plusieurs mutants d’ISG20. Les résultats obtenus indiquent que l’activité antivirale d’ISG20 ne repose pas uniquement sur sa capacité à dégrader l’ARN, puisque plusieurs mutants ont perdu leurs propriétés antivirales malgré une robuste activité RNase in vitro.Mes résultats montrent qu’ISG20 peut bloquer la réplication virale en bloquant la traduction. Dans les cellules exprimant ISG20, ce blocage intervient à la fois pendant l’infection virale et lors de l’expression ectopique de gènes rapporteurs. Les résultats que nous avons obtenus indiquent que la protéine ISG20 affecte la traduction qu’elle soit cap- ou IRES-dépendant. Cette inhibition de la traduction est très probablement indépendante de l’initiation.Afin d’étayer le rôle antiviral d’ISG20 pendant l’infection virale, des souris invalidées pour isg20 (-/-) ont été générées et leur capacité à supporter l’infection par VSV in vivo a été analysée. Les résultats obtenus impliquent clairement ISG20 dans le contrôle naturel de la propagation virale in vivo, confirmant nos données ex vivo.Dans l’ensemble, les données obtenues pendant ma thèse indiquent qu’ISG20 est un important facteur antiviral et mettent en évidence un nouveau mécanisme d’inhibition virale où ISG20 interfère avec la traduction d’ARNm viral. / Interferons specify a complex antiviral response that upon the detection of pathogens through various cellular pattern-recognition receptors (PRRs) lead to the induction of hundreds of genes named interferon-stimulated genes (ISGs). Several ISGs have been reported to restrict viral infection, however the antiviral role/s of many of them remains either unknown or poorly characterized. During my thesis I have focused on the characterization of ISG20 during the replication of two viruses, VSV and HIV-1. ISG20 had been previously identified as an antiviral 3’-5’ exonuclease and was thought to act by directly degrading viral genomes. However, the decrease in viral RNAs specified by ISG20 was controversial. To gather further insights into the mechanism with which ISG20 interfered with viral replication, I constructed several mutants of ISG20. The results we have obtained indicated that the antiviral activity of ISG20 does not solely rely on it's the ability of ISG20 to degrade RNA, as several mutants were identified that lost their antiviral properties despite a robust RNase capacity in vitro.We have found here that ISG20 could block viral replication through a block in translation. This block occurred both during viral infection as well as during the ectopic expression of reporter genes in ISG20-expressing cells. The results we have obtained indicate that ISG20 affects both cap- and IRES-mediated translation in a manner that is very likely independent from translation initiation.To substantiate the antiviral role of ISG20 during viral infection, knock-out isg20 -/- mice were generated and then analyzed for their ability to support VSV infection in vivo. The results obtained, clearly implicate ISG20 in the natural control of viral spread in vivo, strongly supporting our data ex vivo.Overall, the data obtained during my thesis indicate that ISG20 is an important antiviral factor and shed light on a novel mechanism of viral inhibition whereby ISG20 interferes with viral mRNA translation.
|
16 |
Leveraging genomic approaches to characterize mitochondrial RNA biologyWolf, Ashley Robin 04 June 2015 (has links)
Transcription and translation of mammalian mitochondrial DNA (mtDNA) occurs within the mitochondrial matrix to produce oxidative phosphorylation subunits required for efficient energy production. These mtDNA-encoded subunits complex with mitochondrial-localized, nuclear-encoded subunits to form the respiratory chain, and aberrant production or function of these subunits can cause devastating human disease. In addition to 13 oxidative phosphorylation subunits, mtDNA encodes 2 rRNAs and 22 tRNAs. All proteins required for mitochondrial RNA transcription, processing, and translation are encoded in the nucleus and translocated into the mitochondria. Here, I characterize over 100 nuclear-encoded mitochondrial proteins with predicted RNA-binding domains. Using RNAi and an RNA profiling approach, MitoString, we further characterize previously identified RNA processing factors and identify the novel regulator FASTKD4, which influences the abundance of a subset of mitochondrial mRNAs. Next, we apply knowledge of the RNA degradation component SUPV3L1 gleaned from our RNAi studies and previous research to test whether a specific set of variants influence the function of this gene in patient fibroblasts. Using MitoString, we find no evidence of pathogenicity of these variants in our fibroblast model. Our approach highlights the value of a thorough understanding of mitochondrial proteins and the necessity of experimental techniques to validate the effect of variants found in exome-sequencing studies. Finally, we take an unbiased approach to characterizing the mitochondrial transcriptome of mouse liver by sequencing RNA from sequentially enriched mitochondrial fractions. Although we find an abundance of nuclear-encoded 5S rRNA, consistent with previous research, we fail to identify any imported nuclear-encoded tRNAs. Uniting genomics, biochemistry, and medicine, these findings advance our understanding of mitochondrial RNA biology.
|
17 |
Localisation membranaire de la RNase E : rôle dans la dégradation des ARN et la biogenèse des ribosomes / RNase E membrane-localization : role in RNA degradation and ribosome biogenesisHadjeras, Lydia 12 November 2018 (has links)
La RNase E chez Escherichia coli est une endoribonucléase essentielle qui joue un rôle important dans la maturation des ARN stables, dans le contrôle qualité des ribosomes, ainsi que dans la dégradation constitutive et régulée des ARN messagers. La séquence de ciblage à la membrane (MTS pour Membrane Targeting Sequence), qui forme une hélice α-amphipatique, ancre la RNase E à la membrane cytoplasmique interne des cellules. La conservation absolue du MTS chez l'ensemble des -protéobactéries suggère un rôle important de la localisation membranaire RNase E dans le métabolisme de l'ARN. Pour élucider la fonction cellulaire de l'association membranaire de la RNase E, nous avons caractérisé la souche rne∆MTS qui exprime une RNase E cytoplasmique. Les résultats de cette étude nous amènent à proposer que l'association membranaire de la RNase E est nécessaire à la stabilité de la RNase E, est impliquée dans des interactions fonctionnelles avec des régulateurs associés à la membrane et protège les transcrits présents dans le nucléoïde en évitant des interactions prématurées avec la RNase E. En particulier, garder la RNase E à la membrane est critique pour la spécificité de la RNase E dans le contrôle qualité des ribosomes. Cette association membranaire est une nouvelle couche de régulation qui permet d’expliquer comment la RNase E, une enzyme avec peu de spécificité de séquence et avec beaucoup de substrat, peut remplir les fonctions de «maturase» et de «dégradase». / RNase E in Escherichia coli is an essential endoribonuclease with important roles in stable RNA maturation, in ribosome quality control and in constitutive and regulated mRNA degradation. The Membrane Targeting Sequence (MTS), which forms an amphipathic α-helix, anchors RNase E on the inner cytoplasmic membrane. The absolute conservation of the MTS among -Proteobacteria suggests an important role for RNase E membrane association in RNA metabolism. To elucidate the cellular function of the membrane association of RNase E, we characterized the rne∆MTS strain expressing cytoplasmic RNase E. The results of this study lead us to propose that RNase E membrane association is necessary for RNase E stability, for functional interactions with membrane-associated regulatory factors and for protecting nascent transcripts in the nucleoid from premature interactions with RNase E. In particular, keeping RNase E to the membrane is critical for the specificity of RNase E in ribosome quality control. Membrane association is a new layer of regulation that can explain how RNase E, an enzyme with little sequence specificity and many substrates, can fulfill both ‘maturase’ and ‘degradase’ functions.
|
18 |
Étude du rôle d’une Ribonucléase de type III, MtRTL1b, lors du développement des nodosités fixatrices d’azote chez l’espèce modèle Medicago truncatula / Role of a type III Ribonuclease, MtRTL1b, during nitrogen fixing nodule development in Medicago truncatulaMoreau, Jérémy 30 November 2018 (has links)
La majorité des Légumineuses sont capables d’établir une symbiose avec des bactéries du sol nommées Rhizobia. Lors de cette interaction symbiotique, un nouvel organe est formé, la nodosité. Dans cet organe, les bactéries fixent l’azote atmosphérique au profit de la plante hôte. Pendant la symbiose Rhizobia-Légumineuse, deux grands changements transcriptômiques ont été observés par différentes technologies, comme le RNASeq (Maunoury et al., 2010) ou les expériences de microarrays (Benedito et al., 2008). Ces grands changements interviennent aux différentes étapes de développements des nodosités et sont médiés par différents régulateurs de l’expression génique comme certains FTs clés et des petits ARN. Ces petits ARN régulateurs sont produits après le clivage de précurseurs de long ARN double brin ou d’ARN en épingle à cheveux par des enzymes particulières de la famille des ribonucléases de type III (RNase III), nommées DICER-LIKE (DCL). De plus, des gènes codant des RNases III additionnelles sont présents dans le génome de plantes et leurs rôles restent encore à être déterminés.Dans cette étude, nous avons caractérisés la famille des RNases III chez Medicago truncatula mais aussi chez d’autres espèces de légumineuse. Nous avons également recherchés l’implication de MtRTL1b, une RNase III, lors du développement des nodosités.Cette RNase III est un orthologue spécifique des nodosités d’AtRTL1, un répresseur de silencing chez Arabidopsis thaliana. Tout d'abord, nous avons montré que l’expression de ce gène est activée juste avant la différenciation et est principalement restreinte à l’interzone, là où les bactéroïdes deviennent totalement différenciés dans les cellules hôtes, et dans la zone de fixation de la nodosité. La répression de l’expression de MtRTL1b, par ARN interférence dans des racines transgéniques, affecte le développement de la nodosité, la fixation de l’azote et la viabilité des bactéroïdes. Un phénotype opposé est observé lorsque MtRTL1b est exprimé de façon ectopique dans la racine. Les analyses des données de séquençage nous ont permis de mettre en évidence que le RNAi conduit à la sous-expression de 1038 gènes, incluant plus de 109 gènes codant des NCRs qui sont des peptides intervenant dans le développement des bactéroïdes et/ou pour leur viabilité dans les nodosités indéterminées. De plus,des gènes impliqués dans les voies métaboliques et la régulation de l’état d'oxydo-réduction mais aussi dans le processus symbiotique, comme la leghémoglobine, sont également sous-exprimés. Des données de séquençage de petits ARN et d’ARN double brins sont en cours d’analyse afin de caractériser les changements dans les populations de petit ARN et identifier les substrats ARN double brin de cette RNase III lors du développement des nodosités. / Almost all Legumes are able to establish symbiosis with soil bacteria called Rhizobia. During this interaction, a new organ is formed, the nodule. In this organ, bacteria fix the atmospheric nitrogen for the host plant. During Rhizobia-Legumes symbiosis twotranscriptomic changes were observed by different technologies like RNAseq (Maunoury et al., 2010) or microarrays experiment (Benedito et al., 2008). These dramatic changes occur at the different steps of nodule development and are mediated by various gene expression regulators including several keys transcription factors and small RNAs. These small regulatory RNAs are produced after cleavage of long double-stranded or hairpin RNA precursors by particular enzymes of the ribonuclease III (RNase III) family, called DICERLIKEproteins (DCL). However, additional RNase III encoding genes are present in plant genomes, whose roles remain to be fully determined.In this work, we characterized the RNAse III family in the model M. truncatula, as well as other legumes species. We also investigated the involvement in nodule development of MtRTL1b, one RNAse III, a nodule-specific orthologue of AtRTL1, a putative silencing repressor in Arabidopsis thaliana. First, we showed that the expression of this gene is activated just before differentiation and is mainly restricted in the interzone, where bacteroid become fully differentiated into the host cells and in the nitrogen fixation zone of the nodule. Repression of MtRTL1b expression, by RNA interference in transgenic roots, affected nodule development, nitrogen fixation and bacteroid viability while an opposite phenotype was observed in roots with ectopic expression of this gene. Then, RNASeq analyses showed that the RNAileads to the down-regulation of 1038 genes, including more than 109 NCRs, encoding peptides involved in bacteroid development and/or viability in indeterminate nodules. Moreover, genes involved in metabolic pathways and redox regulations as well as other genes involved in symbiosis, like leghemoglobins, are also down-regulated. RNAseq of small RNAs and double strand RNAs are under analysis to characterize changes in sRNA populations and identify dsRNA substrates of this RNAse III during nodule development.
|
19 |
Structure-function relationships in the protein subunit of bacterial ribonuclease PJovanovic, Milan 29 September 2004 (has links)
No description available.
|
20 |
Études in vivo du riborégulateur lysine chez Escherichia coliCaron, Marie-Pier January 2012 (has links)
L'adaptation est un phénomène capital pour la croissance optimale et la survie des bactéries dans un environnement qui est constamment soumis à des changements physico-chimiques. Pour y parvenir, les bactéries doivent contrôler l'expression génétique de façon efficace, c'est-à-dire en ayant le moins de perte énergétique possible et ce, dans un laps de temps très court suite à la détection du stress. Chez les procaryotes, on dénombre plusieurs mécanismes différents pour réguler l'expression des gènes. Par exemple, la transcription de certains gènes peut être inhibée ou activée par des facteurs protéiques. Dans certains cas, c'est plutôt la stabilité de l'ARNm ou encore le niveau traduction du gène qui est affecté, on parle alors de régulation post-transcriptionnelle. Chez les bactéries, les petits ARN régulateurs, exprimés selon différentes conditions de stress, contrôlent majoritairement l'expression de leurs gènes cibles de manière post-transcriptionelle. En plus de ces régulations en trans , il a récemment été découvert que certaines structures conservées de l'ARN pouvaient également contrôler l'expression de gènes en cis lors de la liaison spécifique d'un ligand. Ces structures, aujourd'hui connues sous le nom de riborégulateur, sont divisées en plusieurs classes dépendamment du type de ligand qui est lié. Chez Escherichia coli , il y a six riborégulateurs dont trois riborégulateurs TPP (thiMD, thiCEFSGH et thiBPQ ), un riborégulateur lysine (lysC ), un riborégulateur FMN (ribB ) et un riborégulateur AdoCbl (btuB ). Les résultats, présentés dans ce mémoire, portent sur la caractérisation du mode de régulation du riborégulateur lysine chez E. coli . Ainsi, pour la première fois dans le domaine des riborégulateurs, nous avons démontré que le riborégulateur lysine contrôle l'expression du gène lysC par deux mécanismes distincts, soit au niveau de la traduction du gène et de la stabilité de l'ARNm. Également, nous avons mis en évidence que par un changement de structure, le riborégulateur lysine peut contrôler l'accessibilité du site de clivage à la RNase E et par le fait même, la stabilité de l'ARNm. Ce nouveau mode de régulation ne semble pas être unique au riborégulateur lysine puisqu'il semble, selon les résultats préliminaires, que le riborégulateur thiC régulerait l'expression de l'opéron thiCEFSGH par les mêmes mécanismes de régulation.
|
Page generated in 0.0503 seconds