• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1188
  • 263
  • 233
  • 204
  • 181
  • 114
  • 36
  • 34
  • 20
  • 17
  • 13
  • 13
  • 9
  • 9
  • 7
  • Tagged with
  • 2758
  • 565
  • 538
  • 514
  • 475
  • 410
  • 406
  • 391
  • 348
  • 288
  • 260
  • 248
  • 214
  • 212
  • 208
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Impact Force Reduction Using Variable Stiffness with an Optimal Approach for Jumping Robots

Calderon Chavez, Juan Manuel 22 February 2017 (has links)
Running, jumping and walking are physical activities that are performed by humans in a simple and efficient way. However, these types of movements are difficult to perform by humanoid robots. Humans perform these activities without difficulty thanks to their ability to absorb the ground impact force. The absorption of the impact force is based on the human ability to vary muscles stiffness. The principal objective of this dissertation is to study vertical jumps in order to reduce the impact force in the landing phase of the jump motion of humanoid robots. Additionally, the impact force reduction is applied to an arm-oriented movement with the objective of preserving the integrity of falling humanoid robot. This dissertation focuses on researching vertical jump motions by designing, implementing and testing variable stiffness control strategies based on Computed-Torque Control while tracking desired trajectories calculated using the Zero Moment Point (ZMP) and the Center of Mass (CoM) conditions. Variable stiffness method is used to reduce the impact force during the landing phase. The variable stiffness approach was previously presented by Pratt et al. in [1], where they proposed that full stiffness is not always required. In this dissertation, the variable stiffness capability is implemented without the integration of any springs or dampers. All the actuators in the robot are DC Motors and the lower stiffness is achieved by the design and implementation of PID gain values in the PID controller for each motor. The current research proposes two different approaches to generate variable stiffness. The first approach is based on an optimal control theory where the linear quadratic regulator is used to calculate the gain values of the PID controller. The second approach is based on Fuzzy logic theory and it calculates the proportional gain (KP) of the PID controller. Both approaches are based on the idea of computing the PID gains to allow for the displacement of the DC motor positions with respect to the target positions during the landing phase. While a DC motor moves from the target position, the robot CoM changes towards a lower position reducing the impact force. The Fuzzy approach uses an estimation of the impact velocity and a specified desired soft landing level at the moment of impact in order to calculate the P gain of the PID controller. The optimal approach uses the mathematical model of the motor and the factor, which affects the Q matrix of the Linear Quadratic Regulator (LQR), in order to calculate the new PID values. A One-legged robot is used to perform the jump motion verification in this research. In addition, repeatability experiments were also successfully performed with both the optimal control and the Fuzzy logic methods. The results are evaluated and compared according to the impact force reduction and the robot balance during the landing phase. The impact force calculation is based on the displacement of the CoM during the landing phase. The impact force reduction is accomplished by both methods; however, the robot balance shows a considerable improvement with the optimal control approach in comparison to the Fuzzy logic method. In addition, the Optimal Variable Stiffness method was successfully implemented and tested in Falling Robots. The robot integrity is accomplished by applying the Optimal Variable Stiffness control method to reduce the impact force on the arm joints, shoulders and elbows.
242

The development of a human-robot interface for industrial collaborative system

Tang, Gilbert January 2016 (has links)
Industrial robots have been identified as one of the most effective solutions for optimising output and quality within many industries. However, there are a number of manufacturing applications involving complex tasks and inconstant components which prohibit the use of fully automated solutions in the foreseeable future. A breakthrough in robotic technologies and changes in safety legislations have supported the creation of robots that coexist and assist humans in industrial applications. It has been broadly recognised that human-robot collaborative systems would be a realistic solution as an advanced production system with wide range of applications and high economic impact. This type of system can utilise the best of both worlds, where the robot can perform simple tasks that require high repeatability while the human performs tasks that require judgement and dexterity of the human hands. Robots in such system will operate as “intelligent assistants”. In a collaborative working environment, robot and human share the same working area, and interact with each other. This level of interface will require effective ways of communication and collaboration to avoid unwanted conflicts. This project aims to create a user interface for industrial collaborative robot system through integration of current robotic technologies. The robotic system is designed for seamless collaboration with a human in close proximity. The system is capable to communicate with the human via the exchange of gestures, as well as visual signal which operators can observe and comprehend at a glance. The main objective of this PhD is to develop a Human-Robot Interface (HRI) for communication with an industrial collaborative robot during collaboration in proximity. The system is developed in conjunction with a small scale collaborative robot system which has been integrated using off-the-shelf components. The system should be capable of receiving input from the human user via an intuitive method as well as indicating its status to the user ii effectively. The HRI will be developed using a combination of hardware integrations and software developments. The software and the control framework were developed in a way that is applicable to other industrial robots in the future. The developed gesture command system is demonstrated on a heavy duty industrial robot.
243

Řízení pohonů průmyslového robotu pomocí systémů KEBA / Control of industrial robot drives by KEBA systems

Heinrich, Martin January 2017 (has links)
This diploma thesis deals with the implementation of the KeMotion control system of KEBA company for industrial robot KUKA KR 15/2. It gets to work original robot's drives KUKA with this new system. There was a communication network built up to operate the system itself. It was created between driving system component. Next step was a creation of the connection between control case and a new control system especially robot link up feedback. Later on there was a control programme for PLC created and adjusted including configuration of drives and converter. There was a need to find out the resolver parametr to this settings That one is used to the indirect measurement.
244

Realizace lokalizačního systému pro mobilní robot B2 / Localization system for mobile robot B2

Korytár, Lukáš January 2018 (has links)
The master’s thesis implements localization and navigation routines for mobile robot B2 in order to operate autonomously in an environment described by a road map only. The ROS framework was used for developing new software. The research part describes possible approaches to localization problem and summarizes ROS packages with localization and navigation software. The following part includes communication with the robot’s sensor modules and data processing from LIDAR, IMU and camera. The localization package robot_localization based on Kalman filter is implemented and setting of the navigation stack navigation is proposed, aiming to robot’s autonomous outdoor navigation. Implemented functions were tested in park environment and they are evaluated in this master's thesis too.
245

Synchronizace pohybu průmyslového robotu s pohybem pásového dopravníku / Synchronization of the robot motion with a moving conveyor belt

Nagy, Marek January 2014 (has links)
Diploma thesis is focused on the solution of synchronization of the robot motion with a moving conveyor belt. It informs about basic principles and possibilities of using similar applications. It describes individual elements used in the application, their importance and function. It provides an overview of proposed program codes for the programmable logic controller, the smart camera and the robot. The result is the creation of a functional illustrative application with KUKA robot.
246

Řízení pohonů průmyslového robotu pomocí systémů KEBA / Control of industrial robot drives by KEBA systems

Opluštil, Aleš January 2014 (has links)
This thesis deals with the evaluation of the use of original drive on the older industrial robot KUKA KR 15/2 with a new control system from KEBA. An original control system is removed from robot controller KR C1 and replaced by KeMotion system, which is in this thesis completely described. It is necessary to choose an appropriate way of connection between electric drives of industrial robot and KeMotion control system and finally realize it by practical way. Based on communication with the control system, these engines had been assessed as appropriate. There is also a section created to the description of the control software and its implementation on KUKA robot and to creating of visualization of model.
247

Konstrukce průmyslového robotu typu "SCARA" s elektrickými pohony základního kinematického řetězce, umístěnými na základně robotu / The construction of the industrial robot type "SCARA" with electrical actuators basic kinematic chain located on the base of the robot

Rybár, Šimon January 2016 (has links)
The theme of the thesis is a structural design of the robotic system SCARA. Thesis at the start clarifies the definition of robots and industrial robots. Next it deals with kinematic structures, from basic to more advnced structures, including SCARA type robot. The next chapter describes parts used in design of industrial robots. In the fourth chapter, the table provides an overview of currently available SCARA robots and their attributes. The rest of the thesis itself consists of machine design from determining the required parameters to 3D design. This section also contains extensive computational parts and justifies the choice of the components.
248

Cooperative POMDPs for human-Robot joint activities / Modèles décisionnels pour la coopération homme-robot dans les activités jointes

Ferrari, Fabio Valerio 14 December 2017 (has links)
Objectif de cette thèse est le développent de méthodes de planification pour la résolution de tâches jointes homme-robot dans des espaces publiques. Dans les espaces publiques, les utilisateurs qui coopèrent avec le robot peuvent facilement se distraire et abandonner la tâche jointe. Cette thèse se focalise donc sur les défis posés par l’incertitude et imprévisibilité d’une coopération avec un humain. La thèse décrit l’état de l’art sur la coopération homme-robot dans la robotique de service, et sur les modèles de planification. Elle présente ensuite une nouvelle approche théorique, basée sur les processus décisionnels de Markov partiellement observables, qui permet de garantir la coopération de l’humain tout au long de la tâche, de façon flexible, robuste et rapide. La thèse introduit une structure hiérarchique qui sépare l’aspect coopératif d’une activité jointe de la tâche en soi. L’approche a été appliquée dans un scénario réel, un robot guide dans un centre commercial. La thèse présente les expériences effectuées pour mesurer la qualité de l’approche proposée, ainsi que les expériences avec le robot réel. / This thesis presents a novel method for ensuring cooperation between humans and robots in public spaces, under the constraint of human behavior uncertainty. The thesis introduces a hierarchical and flexible framework based on POMDPs. The framework partitions the overall joint activity into independent planning modules, each dealing with a specific aspect of the joint activity: either ensuring the human-robot cooperation, or proceeding with the task to achieve. The cooperation part can be solved independently from the task and executed as a finite state machine in order to contain online planning effort. In order to do so, we introduce a belief shift function and describe how to use it to transform a POMDP policy into an executable finite state machine.The developed framework has been implemented in a real application scenario as part of the COACHES project. The thesis describes the Escort mission used as testbed application and the details of implementation on the real robots. This scenario has as well been used to carry several experiments and to evaluate our contributions.
249

Grid-based Cyclic Multi-robot Allocation for Object Carrying

Jee Hwan Park (9187781) 30 July 2020 (has links)
In this thesis, we are addressing new method of object transportation using multi-robot system. The new method of object transportation is called A grid-based cyclic robot allocation (GCRA) method which consists multiple spherical robots. The object is placed on top of group of spherical robots before the transportation. The rotation of the multiple spherical robots cause the displacement of the object and reach the goal location based on the direction and speed of the rotation of the robots. The GCRA method for spherical robots is proposed along with specific stability criterion, which designs the formation of the multi-robot system. The formation is created based on the customized grid which is to be modified based on the properties of the object. The shape and the center of gravity of the shape define the horizontal gap, $g_x$ and vertical gap, $g_y$. All the possible locations of spherical robots is the cross points of grid which implies that $g_x$ and $g_y$ defines the distance between the robots and based on the boundary of the robots placed underneath the object, the condition of the stability is defined. It also identifies minimum number of robots required based on the arbitrary shape of an object for stable omni-directional translation of the object on a 2 dimensional space. The desired positions and formation of the robots is identified based goal position of the object. Under centralized system, position control is applied to drive the robots to the desired positions. The position control simultaneously makes the object mobile and maintain the stability of the object. Mathematical proof of the proposed method is shown verifying the stability of the transportation process with the assumptions of no slip between the robots and the object. 2 Dimensional Simulation results of robot allocation using GCRA for several arbitrary shapes certify the proposed method.
250

Robots in Hospitals : How could a robot in a hospital look like?

Linge, Simon January 2019 (has links)
Hospitals are crucial aspects of society, run by incredible people that dedicate their life to caring for others. However, there are several tasks that are vital to a hospitals operation that do not require an empathic competence. One such tasks is the continuous resupply of consumable items needed to maintain necessary hygiene levels.   The Pluto concept act as a helping hand to the assistant nurses, relieving them and enabling them to spend more time with the patients and emphasizes their empathic, inherently human capabilities. The chief motivation is that nurses value the interaction with the patients the most in their work, which is also their primary task. However, they are charged with so many menial tasks that they have little time to care for their patients.

Page generated in 0.2779 seconds