• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MPS-based Domain-specific Language for Defining RTSJ Systems / MPS-based Domain-specific Language for Defining RTSJ Systems

Fechtner, Tomáš January 2012 (has links)
The Real-time Specification of Java (RTSJ) is an intention to introduce Java as a language for developing real-time system. However, the complexity of their development and a non-trivial programming model of RTSJ with its manual memory management often lead to programming errors. To mitigate the development of RTSJ systems it would be beneficial to provide an internal domain-specific language (DSL) extending the Java language which would allow to develop the systems in more intuitive and safer way. However, it is needed to find compromise between solution's power and level of usability, because this two attributes go often against each other. One possible way of DSLs creation concerns the Meta-Programming System (MPS). It allows to develop new domain-specific languages and corresponding projectional editors enabling different views on code. This thesis proposes a design and implementation of the DSL on the top of the MPS platform and corresponding code generator enabling development of RTSJ systems. Furthermore, the thesis provides a simple case-study to evaluate a proposed DSL. Additionally, the thesis assesses the suitability of MPS as a DSL-development platform.
2

Intégration des évènements non périodiques dans les systèmes temps réel : application à la gestion des évènements dans la spécification temps réel pour Java / Non periodic task integration in real-time systemes : application to the real-time specification for Java

Masson, Damien 08 December 2008 (has links)
Les systèmes temps réel sont des systèmes informatiques composés de tâches auxquelles sont associées des contraintes temporelles, appelées échéances. Dans notre étude, nous distinguons deux familles de tâches : les tâches temps réel dur et les tâches temps réel souple. Les premières possèdent une échéance stricte, qu'elles doivent impérativement respecter. Elles sont de nature périodique, ou sporadique, et l'étude analytique de leur comportement fait l’objet d’un état de l’art conséquent. Les secondes sont de nature apériodique. Aucune hypothèse sur leur modèle d’arrivéée ni sur leur nombre n’est possible. Aucune garantie ne saurait être donnée sur leur comportement dès lors que l’on ne peut écarter les situations de surcharge, où la demande de calcul peut dépasser les capacités du système. La problématique devient alors l'étude des solutions d’ordonnancement mixte de tâches périodiques et apériodiques qui minimisent les temps de réponse des tâches apériodiques tout en garantissant les échéances des tâches périodiques. De nombreuses solutions ont été proposées ces vingt dernières années. On distingue les solutions basées sur la réservation de ressources, les serveurs de tâches, des solutions exploitant les instants d'inactivité du système, comme les algorithmes de vol de temps creux. La spécification Java pour le temps réel (RTSJ) voit le jour dans les années 2000. Si cette norme répond à de nombreux problèmes liés à la gestion de la mémoire ou à l'ordonnancement des tâches périodiques, celui de l'ordonnancement mixte de tâches périodiques et apériodiques n'est pas abordé. Nous proposons dans cette thèse d’apporter les modifications nécessaires aux algorithmes principaux d’ordonnancement mixte, le Polling Server (PS), le Deferrable Server (DS) et le Dynamic Approximate Slack Stealer (DASS) en vue de leur implantation avec RTSJ. Ces algorithmes ne peuvent en effet être implantés directement tels qu'ils sont décrits, car ils sont trop liés à l'ordonnanceur du système. Nous proposons des extensions aux APIs RTSJ existantes pour faciliter l’implantation de ces mécanismes modifiés, et nous fournissons les interfaces utiles à l’ajout d'autres solutions algorithmiques. Nous proposons également des modifications sur les APIs existantes de RTSJ afin de répondre aux problèmes d'intégration et d'implantation d’algorithmes d’analyse de faisabilité. Nous proposons enfin un algorithme d’estimation des temps creux, le Minimal Approximate Slack Stealer (MASS), dont l’implantation au niveau utilisateur, permet son intégration dans RTSJ / In computer science, real-time systems are composed of tasks. To each task is associated a timing constraint called a deadline. We distinguish two kinds of tasks : the hard ones and the soft ones. Hard tasks have hard deadlines, which must be respected to ensure the correctness of the system. So hard tasks are in essence periodic, or sporadic. Their behavior has been extensively studied. Soft tasks have soft deadlines that the system has to try to respect. When a task arrival model is unknown, i.e. when task is aperiodic, burst arrivals situation can happens, which makes the tasks timing behavior unpredictable. So aperiodic tasks can only have soft deadlines. The studied problem in this thesis is then the joint scheduling of hard periodic tasks with soft aperiodic events, where the response times of soft tasks have to be as low as possible while the guarantee to meet their deadlines has to be given to hard tasks. A lot of solutions have been proposed these past two decades. We distinguish solutions based on resource reservation, like task servers, and solutions which take benefit from system idle times, like the slack stealer techniques. The first version of the Real-Time Specification for Java (RTSJ) was proposed in early 2000. This specification addresses a lot of problems related to the memory management or the scheduling of periodic tasks. But if it proposes a model to write aperiodic events, advanced mechanisms for the integration of such events to handle the above-mentioned problem are not discussed. We propose modifications to the main advanced mixed scheduling mechanisms like the Polling Server (PS), the Deferrable Server (DS) or the Dynamic Approximate Slack Stealer (DASS) in order to make their implementation possible with the RTSJ. Indeed, these algorithms are deeply connected to the system scheduler, and have to be adapted in order to be implemented in a user-land level.We propose extensions to current RTSJ APIs in order to integrate the modified algorithms and to allow the addition of other algorithms in a unified framework. We also propose some modifications to the RTSJ APIs in order to solve some problems we encountered during the integration of modified algorithms, especially in the field of the feasibility analysis algorithms integration in the specification. Finally, we propose the Minimal Approximate Slack Stealer algorithm (MASS), which is independent of the scheduler implementation and has a lower overhead than DASS
3

A distributed hard real-time Java system for high mobility components

Rho, Sangig 17 February 2005 (has links)
In this work we propose a methodology for providing real-time capabilities to component-based, on-the-fly reconfigurable, distributed systems. In such systems, software components migrate across computational resources at run-time to allow applications to adapt to changes in user requirements or to external events. We describe how we achieve run-time reconfiguration in distributed Java applications by appropriately migrating servers. Guaranteed-rate schedulers at the servers provide the necessary temporal protection and so simplify remote method invocation management. We describe how we manage overhead and resource utilization by controlling the parameters of the server schedulers. According to our measurements, this methodology provides real-time capability to component-based reconfigurable distributed systems in an effcient and effective way. In addition, we propose a new resource discovery protocol, REALTOR, which is based on a combination of pull-based and push-based resource information dissemination. REALTOR has been designed for real-time component-based distributed applications in very dynamic or adverse environments. REALTOR supports survivability and information assurance by allowing the migration of components to safe locations under emergencies suchas externalattack, malfunction, or lackofresources. Simulation studies show that under normal and heavy load conditions REALTOR remains very effective in finding available resources, and does so with a reasonably low communication overhead.REALTOR 1)effectively locates resources under highly dynamic conditions, 2) has an overhead that is system-size independent, and 3) works well in highlyadverse environments.We evaluate the effectiveness of a REALTOR implementation as part of Agile Objects, an infrastructure for real-time capable, highly mobile Java components.
4

Intégration des évènements non périodiques dans les systèmes temps réel : application à la gestion des évènements dans la spécification temps réel pour Java

Masson, Damien 08 December 2008 (has links) (PDF)
Les systèmes temps réel sont des systèmes informatiques composés de tâches auxquelles sont associées des contraintes temporelles, appelées échéances. Dans notre étude, nous distinguons deux familles de tâches : les tâches temps réel dur et les tâches temps réel souple. Les premières possèdent une échéance stricte, qu'elles doivent impérativement respecter. Elles sont de nature périodique, ou sporadique, et l'étude analytique de leur comportement fait l'objet d'un état de l'art conséquent. Les secondes sont de nature apériodique. Aucune hypothèse sur leur modèle d'arrivéée ni sur leur nombre n'est possible. Aucune garantie ne saurait être donnée sur leur comportement dès lors que l'on ne peut écarter les situations de surcharge, où la demande de calcul peut dépasser les capacités du système. La problématique devient alors l'étude des solutions d'ordonnancement mixte de tâches périodiques et apériodiques qui minimisent les temps de réponse des tâches apériodiques tout en garantissant les échéances des tâches périodiques. De nombreuses solutions ont été proposées ces vingt dernières années. On distingue les solutions basées sur la réservation de ressources, les serveurs de tâches, des solutions exploitant les instants d'inactivité du système, comme les algorithmes de vol de temps creux. La spécification Java pour le temps réel (RTSJ) voit le jour dans les années 2000. Si cette norme répond à de nombreux problèmes liés à la gestion de la mémoire ou à l'ordonnancement des tâches périodiques, celui de l'ordonnancement mixte de tâches périodiques et apériodiques n'est pas abordé. Nous proposons dans cette thèse d'apporter les modifications nécessaires aux algorithmes principaux d'ordonnancement mixte, le Polling Server (PS), le Deferrable Server (DS) et le Dynamic Approximate Slack Stealer (DASS) en vue de leur implantation avec RTSJ. Ces algorithmes ne peuvent en effet être implantés directement tels qu'ils sont décrits, car ils sont trop liés à l'ordonnanceur du système. Nous proposons des extensions aux APIs RTSJ existantes pour faciliter l'implantation de ces mécanismes modifiés, et nous fournissons les interfaces utiles à l'ajout d'autres solutions algorithmiques. Nous proposons également des modifications sur les APIs existantes de RTSJ afin de répondre aux problèmes d'intégration et d'implantation d'algorithmes d'analyse de faisabilité. Nous proposons enfin un algorithme d'estimation des temps creux, le Minimal Approximate Slack Stealer (MASS), dont l'implantation au niveau utilisateur, permet son intégration dans RTSJ
5

Intégration des évènements non périodiques dans les systèmes temps réel : application à la gestion des évènements dans la spécification temps réel pour Java

Masson, Damien 08 December 2008 (has links) (PDF)
Les systèmes temps réel sont des systèmes informatiques composés de tâches auxquelles sont associées des contraintes temporelles, appelées échéances. Dans notre étude, nous distinguons deux familles de tâches : les tâches temps réel dur et les tâches temps réel souple. Les premières possèdent une échéance stricte, qu'elles doivent impérativement respecter. Elles sont de nature périodique, ou sporadique, et l'étude analytique de leur comportement fait l'objet d'un état de l'art conséquent. Les secondes sont de nature apériodique. Aucune hypothèse sur leur modèle d'arrivéée ni sur leur nombre n'est possible. Aucune garantie ne saurait être donnée sur leur comportement dès lors que l'on ne peut écarter les situations de surcharge, où la demande de calcul peut dépasser les capacités du système. La problématique devient alors l'étude des solutions d'ordonnancement mixte de tâches périodiques et apériodiques qui minimisent les temps de réponse des tâches apériodiques tout en garantissant les échéances des tâches périodiques. De nombreuses solutions ont été proposées ces vingt dernières années. On distingue les solutions basées sur la réservation de ressources, les serveurs de tâches, des solutions exploitant les instants d'inactivité du système, comme les algorithmes de vol de temps creux. La spécification Java pour le temps réel (RTSJ) voit le jour dans les années 2000. Si cette norme répond à de nombreux problèmes liés à la gestion de la mémoire ou à l'ordonnancement des tâches périodiques, celui de l'ordonnancement mixte de tâches périodiques et apériodiques n'est pas abordé. Nous proposons dans cette thèse d'apporter les modifications nécessaires aux algorithmes principaux d'ordonnancement mixte, le Polling Server (PS), le Deferrable Server (DS) et le Dynamic Approximate Slack Stealer (DASS) en vue de leur implantation avec RTSJ. Ces algorithmes ne peuvent en effet être implantés directement tels qu'ils sont décrits, car ils sont trop liés à l'ordonnanceur du système. Nous proposons des extensions aux APIs RTSJ existantes pour faciliter l'implantation de ces mécanismes modifiés, et nous fournissons les interfaces utiles à l'ajout d'autres solutions algorithmiques. Nous proposons également des modifications sur les APIs existantes de RTSJ afin de répondre aux problèmes d'intégration et d'implantation d'algorithmes d'analyse de faisabilité. Nous proposons enfin un algorithme d'estimation des temps creux, le Minimal Approximate Slack Stealer (MASS), dont l'implantation au niveau utilisateur, permet son intégration dans RTSJ
6

TRADUÇÃO DA ESPECIFICAÇÃO SCJ PARA LINGUAGEM DE PROGRAMAÇÃO C++ / TRANSLATION SCJ SPECIFICATION IN C ++ PROGRAMMING LANGUAGE

Silva, Ricardo Frohlich da 28 April 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Safety critical systems are systems where its failures can cause irreparable damage for this reason the development of safety critical systems involves safety issues and require rigorous validation in the certification process. Certification processes are expensive and lengthy to follow laws and rigorous rules. With the continuous evolution provided by general purpose programming languages, ease of learning, and the use of these languages in industry and academy, researches have been performed aiming to adapt general purpose programming languages for use in safety-critical applications. The purpose of these adaptations is to reduce the scope of commands found in general purpose languages in order to develop safety critical systems, for example, to avoid or reduce the use of recursions. Some examples of these adaptations include the Real Time Specification for Java (RTSJ), developed in 1998 and Safety Critical Java. SCJ uses objects and concepts defined by the RTSJ focusing on the development of safetycritical applications. In SCJ, the concept of missions is deployed where each mission consists of schedulable objects defined by the RTSJ. The portability of a Java application is one of the main factors for choosing this language. However, there is great difficulty in finding virtual machines for embedded safety-critical systems, therefore it is difficult to benefit from the portability provided by the Java virtual machine in this context. Nevertheless, an application developed in the C++ programming language can be executed directly on the device without using a virtual machine. This work presents a translation of the Safety Critical Java to the C++ programming language, maintaining the behaviour of objects that implement the concept of missions for SCJ in C++. This enables the execution of safety-critical applications in embedded devices without the use of a virtual machine. / Sistemas críticos são sistemas em que suas falhas podem causar danos irreparáveis como colocar a vida de pessoas em risco e por este motivo envolve questões de segurança e exige uma validação rigorosa no processo de certificação. Processos de certificação são caros e demorados que seguem leis e regras rigorosas. Com a evolução contínua proporcionada por linguagens de programação de propósito geral, a facilidade de aprendizado, assim como a utilização destas linguagens na indústria e acadêmia, pesquisas vem sendo realizadas com o intuito de adaptar linguagens de programação de propósito gerais para serem utilizadas em aplicações críticas de tempo real. O objetivo destas adaptações é de tornar o escopo de comandos das linguagens para desenvolvimento de sistemas críticos mais restritos, como por exemplo, ao evitar ou reduzir a utilização de recursões. Alguns exemplos dessas adaptações são a Especificação de Tempo Real Java (Real Time Specification for Java - RTSJ) desenvolvida no ano de 1998, e a Safety Critical Java (SCJ) que utiliza objetos e conceitos definidos pela RTSJ com enfoque no desenvolvimento de aplicações para sistemas críticos. Na SCJ foi implementado o conceito de missões onde cada missão é composto por objetos escalonáveis definidos pela RTSJ. A portabilidade de uma aplicação desenvolvida em Java é um dos principais fatores dos quais desenvolvedores desejam utilizá-la. Todavia, existe uma grande dificuldade de encontrar máquinas virtuais para sistemas críticos embarcados, dificultando a portabilidade da qual a linguagem Java fornece. Por outro lado, uma aplicação desenvolvida na linguagem de programação C++ pode ser executada diretamente no dispositivo sem a necessidade de utilizar uma máquina virtual. Por este motivo, nesta dissertação é apresentada uma tradução da especificação Safety Critical Java na linguagem de programação C++, com o objetivo de manter o comportamentos de uma aplicação desenvolvida em SCJ e assim possibilitando a execução de uma aplicação com requisitos temporais em diversos dispositivos embarcados.
7

SOLEIL: An Integrated Approach for Designing and Developing Component-based Real-time Java Systems

Plsek, Ales 14 September 2009 (has links) (PDF)
Over the last decade we witness a steady grow of complexities in real-time systems. Today, developers have to face real-time constraints in almost every software system, from embedded software to financial systems, internet services, and computer entertainment industry. To address this widespread challenge, the Real-Time Specification for Java (RTSJ) has been proposed. However, RTJS itself introduces many nonintuitive rules and restrictions that doom its programming model to be highly error-prone. Moreover, in contrast to the approaches for mainstream software development, the engineering technologies, tools, and frameworks for real-time systems are nowhere near as groundbreaking. The vision behind this dissertation is to ultimately close the gap between real-time programming and today's software technology. Therefore, this dissertation investigates scalable software engineering techniques for RTSJ programming. Our fundamental philosophy is to introduce high-level abstractions of RTSJ concepts in order to leverage development of real-time Java systems. As the first contribution of this thesis, we introduce domain components - an approach to unified expression and manipulation of domain-specific concerns along the software development lifecycle. We use the domain components to construct high-level abstractions of RTSJ specifics that ultimately allow developers to achieve full separation of functional and RTSJ-specific concerns in the development lifecycle. We thus allow developers to reuse and tailor the systems for variously constraining real-time requirements. Second, we propose SOLEIL- a component framework for development of RTSJ systems, the framework introduces a development methodology mitigating the complexities of the RTSJ programming model. Furthermore, we introduce the HULOTTE toolset for automatic instantiation of developed applications. In this process, the functional implementation is separated from RTSJspecific code which is automatically instantiated. In consequence, the development process is fully transparent, RTSJ complexities are hidden from the developers, and the process itself highly resembles to the standard Java development. Finally, the domain component concept and the RTSJ rules and restrictions are defined in the Alloy language which allows us to formally verify that the development process and outcoming software systems are compliant with RTSJ. To validate the approach, we conduct several case studies challenging our proposal from different perspectives. First, performed benchmarks show that the overhead of the SOLEIL framework is minimal in comparison to manually written object-oriented applications while providing more extensive functionality. Second, considering the state-of-the-art RTSJ programming methods, we achieve better separation of functional and RTSJ concerns, thus increasing efficiency of the development process. Finally, we demonstrate universality of the domain component concept by showing its ability to address various domain-specific challenges.

Page generated in 0.0289 seconds