• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 143
  • 55
  • 51
  • 37
  • 35
  • 18
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 886
  • 189
  • 122
  • 92
  • 88
  • 67
  • 63
  • 63
  • 58
  • 49
  • 47
  • 46
  • 44
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Equivalent Linear Model Based Torque Control and Performance Improvement For Switched Reluctance Motor (SRM) Drives

Fang, Gaoliang January 2021 (has links)
Switched reluctance machines (SRMs) are gaining increasing interest in industrial applications due to their low manufacturing cost, simple and robust structure, excellent fault-tolerant capability, and reliable operation in high-temperature operating environments. However, the inherent pulsative torque and radial force lead to the well-known torque ripples and acoustic noise issues. Although there are numerous advanced methods to address the above two issues, the high nonlinearity inevitably brings difficulties in controlling the SRMs. Since the linear SRM voltage and toque equations are simple, it would be beneficial to explore the control algorithm by using such simple linear model. The application of the linear torque model is firstly explored. To utilize such simple model, the connections between the linear toque model and the nonlinear torque model are built through the mapping. The features of these mapping curves are studied in detail. Applying the linear torque equation to generate the reference currents in the optimization-based torque sharing function method shows a significant reduction of the time consumption in solving the bi-optimization problem. Later, the complete equivalent linear SRM model is constructed by introducing the linear voltage equation and corresponding mapping. Since the linear model is easy to predict the behaviour of SRMs, it is beneficial to apply such model in the model predictive torque control (MPTC) methods. The application of the equivalent linear model in the finite control set (FCS) MPTC method shows a low computational burden and occupies less storage space. Besides, the improved switching table in the proposed FCS MPTC method also enhances the torque control performance in high-speed operation conditions. To further reduce the torque ripples, the continuous control set (CCS) MPTC method is developed based on the constructed equivalent linear SRM model. The impossibility in analytically solving the optimization problem in the CCS MPTC method if using the original nonlinear SRM model is innovatively addressed by using the equivalent linear SRM model and properly modifying the cost function. Extensive simulation and experimental results prove the low-ripple feature of the proposed CCS MPTC method in a wide speed range. The high nonlinearity also makes the current control of SRM drives difficult. An intersection-method-based current controller is presented to ensure good current tracking performance for SRMs. The employed adaptive flux-linkage observer makes this current controller show robust performance when there is a deviation on the employed flux-linkage characteristics. Finally, the key but unmeasurable radial force information for the advanced acoustic reduction method is reconstructed based on the measured flux-linkage curves and some core relationship. This core relationship, which is between the square root of the radial force and the flux-linkage, is explored in detail. Simulation results reveal that the proposed method shows good radial force estimation accuracy when there is even 50% airgap length variation. / Thesis / Doctor of Philosophy (PhD)
142

Smart Journal Bearing with Controllable Radial Clearance, Design and Analysis

Farkhondeh, Shahrbanoo 21 June 2017 (has links)
No description available.
143

Effects of Sleep Deprivation on Performance in a Water Radial Arm Maze (WRAM) Task

Hughes, Saline January 2015 (has links)
No description available.
144

USING SURFACE TENSION GRADIENTS AND MAGNETIC FIELD TO INFLUENCE FERROFLUID AND WATER DROPLET BEHAVIOR ON METAL SURFACES

Panth, Mohan 04 August 2016 (has links)
No description available.
145

Stress analysis of a polymer extrusion die using finite element method

Abbud, Ihsan Aladdin January 1982 (has links)
No description available.
146

Analytic Expressions for the Detectability of Exoplanets in Radial Velocity, Astrometric, and Transit Surveys

Mogren, Karen Nicole 27 June 2012 (has links)
No description available.
147

A Model to Predict Sun Gear Radial Orbit of a Planetary Gear Set having Manufacturing Errors

Banerjee, Anindo 29 August 2012 (has links)
No description available.
148

An Adaptive, Black-Box Model Order Reduction Algorithm Using Radial Basis Functions

Stephanson, Matthew B. 30 August 2012 (has links)
No description available.
149

Spatial and Temporal Interactions between Shape Representations in Human Vision

Slugocki, Michael January 2019 (has links)
The human visual system has the remarkable capacity to transform spatio-temporal patterns of light into structured units of perception. Much research has focused on how the visual system integrates information around the perimeter of closed contours to form the perception of shape. This dissertation extends previous work by investigating how the perception of curvature along closed-contour shapes is affected by the presence of additional shapes that appear close to the target shape in space and/or time. Chapter 2 examined the ability of shape mechanisms at representing low frequency curvature in the presence of a higher frequency component along contours in multi-shape displays. We found that additions of high amplitude, high frequency curvature along a contour path can modulate the strength of interaction observed between shapes, and thus attenuates the contribution of low frequency components in interactions between neighbouring contours. Chapter 3 examined what curvature features are of importance in modulating phase dependent interactions between shapes. Results revealed that phase-dependent masking does not depend on curvature frequency, but is related to sensitivity for phase shifts in isolated contours, and is affected by both positive and negative curvature extrema. Computational simulations aimed at modelling the population responses evoked in intermediate shape processing areas (i.e., V4) suggest sensitivity to shifts in phase of shapes is not well captured by such a population code, and therefore alternative explanations are required. Chapter 4 examined how sensitivity to curvature deformations along the contour of a closed shape changes as a function of polar angle, angular frequency, and spatial uncertainty. Results show that human observers are, at first approximation, uniformly sensitivity to curvature deformations across all polar angles tested, and this result holds despite changes in angular frequency and spatial uncertainty. Chapter 5 examined whether the strength of spatial masking between shapes is affected by the presentation of a temporal mask. Our results demonstrate that a temporal mask affected spatial masking only when it preceded the target-mask stimulus by 130-180ms. Furthermore, the effects of a temporal mask on spatial masking are approximately additive, suggesting that separate components contribute to spatial and temporal interactions between shapes. / Thesis / Doctor of Philosophy (PhD)
150

A theoretical model of the cornea as a thin shell of variable thickness in relation to radial keratotomy

Williams, Sharon Lee January 1984 (has links)
A theoretical study of the deformation fields of the cornea under internal pressure is presented. The general elasticity equations describing a thin shell of variable thickness are solved using finite difference techniques. To gain insight into the natural corneal structure, the constant thickness case is compared to one of normal thickness. The bending stresses are found to influence the cornea's natural curvature. In the third case, the normal thickness is increased 10% to model the edematous state resulting from the incisions made during radial keratotomy. A comparison of the third case reveals the increased thickness in the peripheral cornea makes a minor contribution to the displacement; but moreover, the curvature change is opposite to that desired from radial keratotomy. The incisions are necessary to weaken the lateral support of the shell allowing the displacement and change in curvature which corrects myopia. / Master of Science

Page generated in 0.0304 seconds