• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Antidepressant Drug Tianeptine Blocks Working Memory Errors: Pharmacological and Endocrine Manipulations of Stress-Induced Amnesia in Rats

Campbell, Adam Marc 23 March 2004 (has links)
Stress has been shown to influence learning and memory in humans and rats (Diamond et al, 1996; Diamond et al, 1999; Krugers et al, 1997; Kirschbaum et al, 1996; Lupien et al, 1997). The hippocampus and is an area of the brain involved in memory function in humans and rats (Kirschbaum et al, 1996; Lupien et al, 1997) and is highly susceptible to stress (Diamond et al, 1990). Research has indicated that a number of stressors such as exposure to a predator (Diamond et al, 1999) can lead to stress effects. Recently efforts have been made to counteract the effects of stress on brain function and related behavioral performance. The antidepressant drug tianeptine has been used in this setting. Little is known about tianeptine's role in blocking stress effects on behavior and memory performance with regard to interactions with stress hormones, such as corticosterone. Here a set of experiments delineates the role of corticosterone and its link to stress effects on memory as well as an investigation into the actions of tianeptine and ADX in the blockade of stress effects on memory. First, I examined the effects of tianeptine on multi-day RAWM working memory training and a novel one-day learning and memory training task. Second, the effects of propranolol, an anti-anxiety medication, were tested with regard to the alleviation of stress effects on memory, allowing for a comparison between two anti-anxiety drugs, tianeptine and propranolol. Third, adrenalectomy (ADX) and the resultant depletion of adrenal hormones were examined in connection with learning and memory in the one-day learning task. Fourth, the effects and interactions of tianeptine and ADX were examined to see if tianeptine can exert its effects in the absence of adrenal hormones. Tianeptine blocked stress-induced memory errors in two different tasks and under ADX conditions. All effects were independent of corticosterone levels. In contrast, propranolol was ineffective in blocking stress-induced memory changes. The current data may prove useful in the development of antidepressant drugs and further the study of the mechanisms by which stress affects memory.
2

Dissecting out the contribution of cognitive, social, and physical activities to environmental enrichment's ability to protect Alzheimer's mice against cognitive impairment

Cracchiolo, Jennifer R 01 June 2005 (has links)
Retrospective studies suggest that lifestyle activities may provide protection against Alzheimer s Disease (AD). However, such studies can be inaccurate and prospective longitudinal studies investigating lifestyle protection against AD are both impractical and impossible to control for. Transgenic (Tg+) AD mice offer a model in a well controlled environment for testing the potential for environmental factors to impact AD development. In an initial study, Tg+ and non-transgenic (Tg-) mice were housed in either environmentally enriched (EE) or standard housing (SH) from 2-6 months of age, with a behavioral battery given during the last 5 weeks of housing. In the Morris maze, platform recognition, and radial arm water maze tasks, Tg+/EE mice were completely protected from cognitive impairment present in Tg+/SH mice and comparable to control Tg-/SH mice in cognitive performance. The current study utilized the same cognitive-based behavioral battery and multimetric statis statistical analysis to investigate the protective effects of "complete" environment enrichment (EE) versus several of its components (physical activity, social interactions) in AD transgenic mice. The AD transgenic mice utilized develop beta-amyloid (AB) deposition and cognitive impairment by 6-7 months of age. Similar to our initial study, results show that "complete" EE (physical, social, and cognitive activities) from 2 to 8 months of age completely protected AD transgenic mice from cognitive impairment in tasks representing different cognitive domains - working memory, reference learning, and search/recognition. In strong contrast, Tg+ mice reared in environments that included physical activity and social interaction, or only social interaction, were not protected from cognitive impairment in adulthood -- enhanced cognitive activity was required over and above that present in these other environments. Through use of discriminant function analysis, EE and/or NT mice were consistently discriminated from the poorer performing other housing groups. The cognitive benefits observed in EE-housed Tg+ mice occurred without significant changes in cortical AB levels, plasma cytokine levels, or plasma corticosterone levels, suggesting involvement of mechanisms independent of these endpoints. However, EE-housed Tg+ mice did have decreased dendritic length of neurons in the parietal cortex (but not hippocampus). Noteworthy is that plasma cytokine levels and hippocampal dendritic length consistently correlated with cognitive measures, suggesting their involvement in underlying mechanisms of cognitive performance. The present work provides the first evidence that "complete" EE (including enhanced cognitive activity) is needed to provide cognitive protection against AD in a Tg+ model of the disease, while the physical and social activity components of EE do not alone lead to protection. These results suggest that humans desiring to gain maximal environmental protection against AD should live a lifestyle high in cognitive, social, and physical activities together.
3

The Effect of Rho Kinase Inhibitors on Alzheimer's Disease

January 2017 (has links)
abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively. Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme that plays important roles in neuronal cells including mediating actin organization and dendritic spine morphogenesis. The ROCK inhibitor Fasudil has been shown to increase learning and working memory in aged rats, but another ROCK inhibitor, Y27632, was shown to impair learning and memory. I am interested in exploring how these, and other ROCK inhibitors, may be acting mechanistically to result in very different outcomes in treated animals. Preliminary research on thirteen different ROCK inhibitors provides evidence that while Fasudil and a novel ROCK inhibitor, T343, decrease tau phosphorylation in vitro, Y27632 increases tau phosphorylation at a low dose and decreases at a high dose. Meanwhile, novel ROCK inhibitor T299 increases tau phosphorylation at a high dosage. Further, an in vivo study using triple transgenic AD mice provides evidence that Fasudil improves reference memory and fear memory in both transgenic and wild-type mice, while Y27632 impairs reference memory in transgenic mice. Fasudil also decreases tau phosphorylation and Aβ in vivo, while Y27632 significantly increases the p-tau to total tau ratio. / Dissertation/Thesis / Doctoral Dissertation Neuroscience 2017
4

The Novel Use of Recombinant Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) to Reverse Cerebral Amyloidosis and Cognitive Impairment in Alzheimer’s Disease Mouse Models: Insights from the Investigation of Rheumatoid Arthritis as a Negative Risk Factor for Alzheimer’s Disease

Boyd, Timothy David 02 July 2010 (has links)
For many years, it has been known that Rheumatoid arthritis (RA) is a negative risk factor for the development of Alzheimer’s disease (AD). It has been commonly assumed that RA patients’ usage of non-steroidal anti-inflammatory drugs (NSAIDs) have helped prevent the onset and progression of AD pathogenesis. Furthermore, experiments in animal models of Alzheimer’s disease have looked to inhibit inflammation, and have demonstrated some efficacy against AD-like pathology in these models. Thus many NSAID clinical trials have been performed over the years, but all have proven unsuccessful in AD patients. This suggests that intrinsic factors within RA pathogenesis itself may underlie RA’s protective effect. My dissertation research goal was to investigate this inverse relationship between RA and AD, in order to more precisely pinpoint critical events in AD pathogenesis toward developing therapeutic strategies against AD. It seemed improbable that any secreted factors, produced in RA pathogenesis, could maintain high enough concentrations in the circulatory system to cross the blood brain barrier and inhibit AD pathogenesis, without affecting all other organ systems. It did seem possible that the leukocyte populations induced in RA, could traverse the circulatory system, extravasate into the brain parenchyma, and impede or reverse AD pathogenesis. We thus investigated the colony-stimulating factors, which are up-regulated in RA and which induce most of RA’s leukocytosis, on the pathology and behavior of transgenic AD mice. We found that G-CSF and more significantly, GM-CSF, reduced amyloidosis throughout the treated brain hemisphere one week following bolus intrahippocampal administration into AD mice. We then found that 20 days of subcutaneous injections of GM-CSF (the most amyloid-reducing CSF in the bolus experiment) significantly reduced brain amyloidosis and completely reversed cognitive impairment in aged cognitively-impaired AD mice, while increasing hippocampal synaptic area and microglial density. These findings, along with two decades of accrued safety data using Leukine, the recombinant human GM-CSF analogue, in elderly leukopenic patients, suggested that Leukine should be tested as a treatment to reverse cerebral amyloid pathology and cognitive impairment in AD patients. It was also implied that age-related depressed hematopoiesis may contribute to AD pathogenesis.
5

Multivariate Anti-inflammatory Approaches to Rescue Neurogenesis and Cognitive function in Aged Animals

Acosta, Sandra Antonieta 01 January 2011 (has links)
Studies have shown that there is a strong correlation between aging and neurodegenerative diseases. Aging is considered the number one risk factor to develop neuropathologies such as memory loss, senile dementia, Alzheimer's disease (AD), and Parkinson's disease. Neurodegenerative diseases tend to start during adulthood, and aggravate over time, making them difficult to prevent and to treat. In the Unites States, demographic studies by U.S. Bureau of the Census have determined that our aging population of >65 years is expected to increase from the present 35 million to 78 million in 2030. This would result, not only to an increase of age-related chronic illness, and mental disability, but to a decrease of quality of life, and an elevation of medical cost. Thus, this dissertation has focused on investigating the molecular mechanisms during the process of aging and its correlation to chronic inflammation and cognitive impairments. The etiology of neurodegenerative diseases is not very well understood, but research has shown that the process of aging is a key factor, which involved oxidative stress, an over reactive microglia, and increased production of pro-inflammatory cytokines. All these factors are known to decrease cell proliferation, which limit neuroplasticity and they might lead the transition from normal aging to more severe cognitive dysfunction associated with neurodegenerative diseases. Previously, we have shown that natural compounds such as polyphenols from blueberry, and green tea, and amino acids like carnosine are high in antioxidant and anti-inflammatory activity that decreases the damaging effects of reactive oxygen species (ROS), in the blood, brain, and other tissues of the body. Therefore, we examined the hypothesis that the pro-inflammatory cytokine TNF-[U+F061] may be a critical factor that modulates classical conditioning behavior, the effects of NT-020 on adult neurogenesis, inflammatory markers of the CNS, and the effect of NT-020 on cognitive function as shown using spatial navigation task. The results show that in aged rats, endogenous production of pro-inflammatory cytokine TNF-α impairs the acquisition of learning and memory consolidation in the delay eyeblink classical conditioning task (EBC). It was shown that this effect can be replicated by infusing young rats with exogenous TNF-α prior to EBC. Using NT-020 as a dietary supplement for one month, it was found that NT-020 ameliorates the age-related impairments typically found in aged rats in the spatial navigation tasks Morris water maze and radial arm water maze. By looking at immunohistochemistry analysis, it was found a decreased number of OX6 MHC II positive cells, increased neurogenesis, and increased number of proliferating cells in the dentate gyrus (DG) of the hippocampus in the aged rats fed with NT-020 relative with their counterpart aged control. In the CNS, Inflammatory markers were analyzed, and it was found that aged rat fed with NT-020 supplemented diet has decrease levels of pro-inflammatory cytokines in compared with aged rats fed with NIH-31 control diet. In conclusion, TNF-α, a pro-inflammatory cytokine has shown to have a modulatory effect during classical conditioning. Moreover, NT-020 may promote a healthy CNS milieu, proliferation of neuronal progenitors, and maintenance of nature neurons in the aged rats and it might exert anti-inflammatory actions which promote a functional stem cell pool in the CNS of aged rats.

Page generated in 0.0939 seconds