• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 58
  • 40
  • 20
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 373
  • 373
  • 68
  • 68
  • 49
  • 39
  • 38
  • 35
  • 33
  • 32
  • 32
  • 31
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Monte Carlo radiation transfer studies of protoplanetary environments

Walker, Christina H. January 2007 (has links)
Monte Carlo radiation transfer provides an efficient modelling tool for probing the dusty local environment of young stars. Within this thesis, such theoretical models are used to study the disk structure of objects across the mass spectrum - young low mass Brown Dwarfs, solar mass T-Tauri stars, intermediate mass Herbig Ae stars, and candidate B-stars with massive disks. A Monte Carlo radiation transfer code is used to model images and photometric data in the UV - mm wavelength range. These models demonstrate how modelling techniques have been updated in an attempt to reduce the number of unknown parameters and extend the diversity of objects that can be studied.
252

Hawking radiation in dispersive media

Robertson, Scott James January 2011 (has links)
Hawking radiation, despite its presence in theoretical physics for over thirty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to systems which model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon but does not lend itself well to analytic treatment, thus rendering Hawking’s prediction less secure. A general analytic method for dealing with Hawking radiation in dispersive systems has proved difficult to find. This thesis presents new numerical and analytic results for Hawking emission spectra in dispersive systems. It examines two black-hole analogue systems: it begins by introducing the well-known acoustic model, presenting some original results in that context; then, through analogy with the acoustic model, goes on to develop the lesser-known fibre-optical model. The following original results are presented in the context of both of these models: • an analytic expression for the low-frequency temperature is found for a hyperbolic tangent background profile, valid in the entire parameter space; it is well-known that the spectrum is approximately thermal at low frequencies, but a universally valid expression for the corresponding temperature is an original development; • an analytic expression for the spectrum, valid over almost the entire frequency range, when the velocity profile parameters lie in the regime where the low-frequency temperature is given by the Hawking prediction; previous work has focused on the low-frequency thermal spectrum and the characterization of the deviations from thermality, rather than a single analytic expression; and • a new unexplored regime where no group-velocity horizon exists is examined; the Hawking spectra are found to be non-zero here, but also highly non-thermal, and are found, in the limit of small deviations, to vary with the square of the maximum deviation; the analytic expression for the case with a horizon is found to carry over to this new regime, with appropriate modifications. Furthermore, the thesis examines the results of a classical frequency-shifting experiment in the context of fibre-optical horizons. The theory of this process is presented for both a constant-velocity and a constantly-decelerating pulse, the latter case taking account of the Raman effect. The resulting spectra are at least qualititively explained, but there is a discrepancy between theory and experiment that has not yet been accounted for.
253

Radiative heat transfer in combustion applications : parallel efficiencies of two gas models, turbulent radiation interactions in particulate laden flows, and coarse mesh finite difference acceleration for improved temporal accuracy

Cleveland, Mathew A. 02 December 2011 (has links)
We investigate several aspects of the numerical solution of the radiative transfer equation in the context of coal combustion: the parallel efficiency of two commonly used opacity models, the sensitivity of turbulent radiation interaction (TRI) effects to the presence of coal particulate, and an improvement of the order of temporal convergence using the coarse mesh finite difference (CMFD) method. There are four opacity models commonly employed to evaluate the radiative transfer equation in combustion applications; line-by-line (LBL), multigroup, band, and global. Most of these models have been rigorously evaluated for serial computations of a spectrum of problem types [1]. Studies of these models for parallel computations [2] are limited. We assessed the performance of the Spectral-Line- Based weighted sum of gray gasses (SLW) model, a global method related to K-distribution methods [1], and the LBL model. The LBL model directly interpolates opacity information from large data tables. The LBL model outperforms the SLW model in almost all cases, as suggested by Wang et al. [3]. The SLW model, however, shows superior parallel scaling performance and a decreased sensitivity to load imbalancing, suggesting that for some problems, global methods such as the SLW model, could outperform the LBL model. Turbulent radiation interaction (TRI) effects are associated with the differences in the time scales of the fluid dynamic equations and the radiative transfer equations. Solving on the fluid dynamic time step size produces large changes in the radiation field over the time step. We have modifed the statistically homogeneous, non-premixed flame problem of Deshmukh et al. [4] to include coal-type particulate. The addition of low mass loadings of particulate minimally impacts the TRI effects. Observed differences in the TRI effects from variations in the packing fractions and Stokes numbers are difficult to analyze because of the significant effect of variations in problem initialization. The TRI effects are very sensitive to the initialization of the turbulence in the system. The TRI parameters are somewhat sensitive to the treatment of particulate temperature and the particulate optical thickness, and this effect are amplified by increased particulate loading. Monte Carlo radiative heat transfer simulations of time-dependent combustion processes generally involve an explicit evaluation of emission source because of the expense of the transport solver. Recently, Park et al. [5] have applied quasidiffusion with Monte Carlo in high energy density radiative transfer applications. We employ a Crank-Nicholson temporal integration scheme in conjunction with the coarse mesh finite difference (CMFD) method, in an effort to improve the temporal accuracy of the Monte Carlo solver. Our results show that this CMFD-CN method is an improvement over Monte Carlo with CMFD time-differenced via Backward Euler, and Implicit Monte Carlo [6] (IMC). The increase in accuracy involves very little increase in computational cost, and the figure of merit for the CMFD-CN scheme is greater than IMC. / Graduation date: 2012
254

Radiation hydrodynamic models and simulated observations of radiative feedback in star forming regions

Haworth, Thomas James January 2013 (has links)
This thesis details the development of the radiation transport code torus for radiation hydrodynamic applications and its subsequent use in investigating problems regarding radiative feedback. The code couples Monte Carlo photoionization with grid-based hydrodynamics and has the advantage that all of the features available to a dedicated radiation transport code are at its disposal in RHD applications. I discuss the development of the code, including the hydrodynamics scheme, the adaptive mesh refinement (AMR) framework and the coupling of radiation transport with hydrodynamics. Extensive testing of the resulting code is also presented. The main application involves the study of radiatively driven implosion (RDI), a mechanism where the expanding ionized region about a massive star impacts nearby clumps, potentially triggering star formation. Firstly I investigate the way in which the radiation field is treated, isolating the relative impacts of polychromatic and diffuse field radiation on the evolution of radiation hydrodynamic RDI models. I also produce synthetic SEDs, radio, Hα and forbidden line images of the bright rimmed clouds (BRCs) resulting from the RDI models, on which I perform standard diagnostics that are used by observers to obtain the cloud conditions. I test the accuracy of the diagnostics and show that considering the pressure difference between the neutral cloud and surrounding ionized layer can be used to infer whether or not RDI is occurring. Finally I use more synthetic observations to investigate the accuracy of molecular line diagnostics and the nature of line profiles of BRCs. I show that the previously unexplained lack of dominant blue-asymmetry (a blue-asymmetry is the expected signature of a collapsing cloud) in the line profiles of BRCs can be explained by the shell of material, swept up by the expanding ionized region, that drives into the cloud. The work in this thesis combines to help resolve the difficulties in understanding radiative feedback, which is a non–linear process that happens on small astrophysical timescales, by improving numerical models and the way in which they are compared with observations.
255

Giant planet formation and migration

Ayliffe, Benjamin A. January 2009 (has links)
This thesis describes efforts to improve the realism of numerical models of giant planet formation and migration in an attempt to better understand these processes. A new approach has been taken to the modelling of accretion, designed to mimic reality by allowing gas to accumulate upon a protoplanetary surface. Implementing this treatment in three-dimensional self-gravity radiation hydrodynamics calculations provides an excellent model for planet growth, allowing an exploration of the factors that affect accretion. Moreover, these calculations have also been extended to investigate the migration of protoplanets through their parent discs as they grow. When focusing on the growth of non-migrating protoplanets, the models are performed using small sections of disc, enabling excellent resolution right down to the core; gas structures and flow can be resolved on scales from ~ 10^4 to 10^11 metres. Using radiative transfer, these models reveal the importance of opacity in determining the accretion rates. For the low mass protoplanets, equivalent in mass to a giant planet core (~ 10 M⊕), the accretion rates were found to increase by up to an order of magnitude for a factor of 100 reduction in the grain opacity of the parent circumstellar disc. However, even these low opacities lead to growth rates that are an order of magnitude slower than those obtained in locally-isothermal conditions. For high mass protoplanets (>~ 100M⊕), the accretion rates show very little dependence upon opacity. Nevertheless, the rates obtained using radiative transfer are still lower than those obtained in locally-isothermal models by a factor of ~2, due to the release of accretion energy as heat. Only high mass protoplanets are found to be capable of developing circumplanetary discs, and this ability is dependent upon the opacity, as are the scaleheights of such discs. However, their radial extents were found to be independent of the opacity and the protoplanet mass, all reaching ≈ RH/3, inline with analytic predictions. Migration is investigated using global models, ensuring a self-consistently evolved disc. Using locally-isothermal calculations, it was found that the capture radius of an accreting sink particle, used to model a protoplanet without a surface, must be small (<< RH) to yield migration timescales consistent with linear theory of Type I migration. In the low mass regime of Type I migration, accreting sinks with such small radii yield timescales consistent with those models in which a protoplanetary surface is used. However, for high mass protoplanets, undergoing Type II migration, the surface treatment leads to faster rates of migration, indicating the importance of a realistic accretion model. Using radiative transfer, with high opacities, leads to a factor of ~ 3 increase in the migration timescale of the lowest mass protoplanets, improving their chances of survival. As suitable gas giant progenitors, their survival is key to understanding the growth of giant planets. An unexpected result of the radiative transfer was a reduction in the migration timescale of high mass planets. This appears to be a result of the less thoroughly evacuated gaps created by planets in non-locally-isothermal discs, which affects the corotation torque.
256

Transfert radiatif hors équilibre thermodynamique local dans les atmosphères d'étoiles supergéantes rouges / Non local thermodynamical equilibrium radiative transfert in red supergiants stars atmospheres

Lambert, Julien 03 December 2012 (has links)
L'eau est un constituant essentiel de l'atmosphère de supergéantes rouges (RSG), mais dont l'influence reste mal comprise. Le spectre observé de l'eau de ces étoiles ne peut être reproduit que par l'ajout d'une coquille de gaz moléculaire, les MOLsphères. Cependant, l'hypothèse des MOLsphères reste fragile et sujette à caution. Dans le but de mieux interpréter les spectres observés, la synthèse de spectres hors équilibre thermodynamique local est une approche potentiellement importante. Les effets hors ETL étant potentiellement fort, ils pourraient être en mesure de lever les problèmes de l'interprétation des raies de l'eau sans ajout de MOLsphère et impliquer un rôle important dans la dynamique de l'atmosphère. Pour cela, nous avons développé une méthode originale en mesure de résoudre l'équation de transfert pour les nombreuses transitions radiatives de l'eau sans approximationETL. Cette méthode a été mise en oeuvre via le développement d'un code de transfert radiatif parallèle. Les premiers résultats montrent que les effets hors ETL dans l'atmosphère des RSG, et leur impact sur le spectre comme sur certaines observables utilisées pour sonder ces étoiles, sont importants / Water is an important constituent of the atmosphere of red supergiant stars (RSG), which influence remains however poorly understood. The water spectrum of these stars can apparently be only reproduced through the addition of a detached shell of cool molecular gas, the so-called MOLspheres. However, this hypothesis is still cautious. In order to better interpret observed spectra, non local thermodynamic equilibrium (NLTE) spectrum synthesis may be potentially important. NLTE effects being potentially important, they may alleviate the problems in the interpretation of water spectra, and affect the atmosphere dynamics. We thus developed an original method to solve the radiative transfer equation, adapted to the numerous water transitions and without the LTE approximation. This method has been implemented in an original parallel code. Preliminary results show that NLTE effects in RSG atmospheres and their impact on observables such as the emergent spectrum are very important.
257

Calculs de sensibilités par méthode de Monte-Carlo, pour la conception de procédés à énergie solaire concentrée / Monte-Carlo Method and sensitivity computations for the design of concentrated solar energy processes

De la Torre, Jérémie 04 February 2011 (has links)
Dans le contexte énergétique mondial de raréfaction des ressources fossiles, et de réduction des émissions de gaz à effet de serre, l’agence internationale de l’énergie prévoit que la filière solaire thermodynamique fournisse en 2050 plus de 10% de l’électricité mondiale. De gros efforts de recherche sont nécessaires pour atteindre cet objectif. Les axes de développement actuels des technologies solaires à concentration portent, entre autres, sur les systèmes optiques composés de multiples miroirs (champs d’héliostats, concentrateurs linéaires de Fresnel, Beam-Down), sur les récepteurs solaires volumétriques (récepteurs à air, lits fluidisés) et sur les réacteurs (chimie à haute température, photobioréacteurs, dessalement par voie thermodynamique). Le transfert d’énergie par rayonnement est un des phénomènes prépondérants dans les systèmes optiques concentrateurs et dans les récepteurs solaires volumétriques. Les laboratoires Rapsodee et Laplace ont développé en quelques années d’étroite collaboration un savoir faire méthodologique sur la modélisation des transferts radiatifs et le calcul de sensibilité par la Méthode de Monte- Carlo et ils ont accumulé une expérience pratique, issue de la synthèse d’image, en programmation scientifique en interaction avec des chercheurs en informatique. Nous montrons dans ce manuscrit dans quelle mesure l’association de ces compétences théoriques et pratiques permet de répondre à certains besoins de la communauté du solaire à concentration et nous donnons des éléments de réponses ou des pistes à explorer en vue de surmonter les difficultés restantes que nous avons rencontrées. / The decrease of the fossil energy resources and the reduction of the emissions of greenhouse effect gas are major environmental issues. In this global situation, the International Energy Agency expects that solar power will provide more than 10% of the world electricity in 2050. Significant research efforts are needed to achieve this goal. Radiative transfer is one of the main physical phenomena in solar optical concentrators and in volumetric solar receivers. In few years of closely work, the laboratories Rapsodee and Laplace developed a methodological know-how in using Monte-Carlo methods for the modeling of radiative transfer and the sensitivity computations. They have also accumulated some experience in scientific programming and algorithms optimisation. We show in this dissertation how the combination of these physicists theoretical and practical skills can meet certain needs of the community of solar concentration. We give some answers or clues to be explored to get through the remaining difficulties we encountered.
258

Dynamique et stabilité des structures à double fronts d’ablation en fusion par con?nement inertiel en attaque directe

Drean, Virginie 09 December 2009 (has links)
Ce travail de thèse porte sur l’étude de la dynamique et de la stabilité de structures présentant deux fronts d’ablation dans le cadre de la fusion par confinement inertiel (FCI) en attaque directe. Dans un premier temps, des simulations 1D réalisées avec le code d’hydrodynamique CHIC ont permis d’obtenir ces structures. Pour cela, des plaques planes de matériaux de Z modéré, comme l’aluminium, la silice, le plastique dopé au brome, ainsi que le plastique sont éclairées par laser, à des intensités proches de celles requises pour la FCI. Les effets radiatifs, de par leur contribution dans le bilan d’énergie, modifient alors l’hydrodynamique de la cible : deux fronts d’ablation séparés par un plateau de densité quasi-constante sont observés. La dynamique de telles structures est alors caractérisée de manière qualitative. Une étude du préchauffage du combustible (DT) induit par le rayonnement de ces ablateurs de Z modéré est alors réalisée. Un nouveau modèle théorique, basé sur une hypothèse d’isobaricité au front d’ablation, prend en compte deux mécanismes de transport de l’énergie (transport d’électrons et de photons) et permet de reproduire ces structures en supposant un traitement analytique des opacités de la matière. De plus, ce modèle permet de comprendre les mécanismes physiques qui interviennent dans la formation des structures à double front d’ablation. Le code PERLE, dédié à l’étude de la stabilité hydrodynamique d’écoulements en phase linéaire, est alors modifié pour prendre en compte le transport de photons en utilisant les simplifications du modèle théorique. La deuxième partie de cette thèse porte sur la stabilité hydrodynamique de ces structures à double front d’ablation. Les modèles existants pour les problèmes de stabilité au front d’ablation sont insuffisants : les limites de ces modèles sont montrées, mais des premières informations sur le front d’ablation principal sont néanmoins obtenues. Le code PERLE permet alors de calculer les perturbations linéaires au front d’ablation quand la structure à double front d’ablation entière est considérée. Des taux de croissance pour l’instabilité Rayleigh-Taylor ablative sont obtenus et présentent une nouvelle forme non connue, associée directement à la structure à double front d’ablation. Les calculs 2D réalisés avec le code CHIC et une physique plus réaliste confirment ces résultats. L’étude de la localisation spatiale des perturbations montrent la relation entre la structure à deux fronts d’ablation et la forme caractéristique des taux de croissance. Finalement, l’utilisation d’ablateurs de Z modéré peut être une alternative intéressante pour réduire l’instabilité de Rayleigh-Taylor au front d’ablation en FCI par attaque directe. / This PhD thesis adresses the dynamics and the stability of double ablation fronts structures in direct-drive inertial confinement fusion (ICF). In the first part, these structures have been obtained using the hydrodynamic code CHIC calculations. By irradiating solid targets of moderate Z such as aluminium, silicium, brominated doped plastic, and plastic with ICF like laser intensities, radiative effects become non negligibles and modify the target hydrodynamics. Two ablation fronts separated by a quasi-constant density plateau are then observed. The dynamic of such structures is then qualitatively characterized. The fuel (DT) preheat due to self-emitted radition of such ablators is then studied. A new theoretical model, based on an isobaric approximation in the ablation region allows us to understand the complex physical mecanisms involved in the formation and the dynamics of these structures, using analytical expressions for the opacities. The PERLE code, dedicated to the calculation of linear perturbations of unsteady flows, is then modified to take into account the radiative energy transport, using the hypothesis of the new theoretical model. In the second part of this work, a study of the stability of double ablation fronts structures is carried out. The existing models for the ablation front stability problems are no longer sufficient in this case: their limitations are shown, but, nevertheless, firsts informations on the main ablation front are obtained. Then, the PERLE code is used when the whole double ablation fronts structure is considered. The growth rates for the ablative Rayleigh-Taylor instability are estimated, and show a new shape, unknown up to now. The 2D calculations made with the CHIC code using a more realistic physics confirm these results. The study of the spatial localization of perturbations in the structure shows the relation between the two ablation fronts and the characteristic shape of the growth rates obtained. Finally, the use of such moderate Z ablators is an interesting alternative to reduce the Rayleigh-Taylor instability at the ablation front in direct-drive ICF.
259

Modélisation, approximation numérique et couplage du transfert radiatif avec l'hydrodynamique

Dubois, Joanne 15 December 2009 (has links)
Le présent travail est consacré à l’approximation numérique des solutions du modèle aux moments M1 pour le transfert radiatif. Il s’agit, ici, de développer des solveurs numériques performants et précis capables de prédire avec précision et robustesse des écoulements où le transfert radiatif joue un rôle essentiel. Dans ce sens, plusieurs méthodes numériques ont été envisagées pour la dérivation des schémas numériques de type solveur de Godunov. Une attention particulière a été portée sur les solveurs préservant les ondes de contact stationnaires. En particulier, un schéma de relaxation et un solveur HLLC sont présentés dans ce travail. Pour chacun de ces solveurs, la robustesse de la méthode a été établie (positivité de l’énergie radiative et limitation du flux radiatif). La validation et l’intérêt des méthodes abordées sont exhibés à travers de nombreuses expériences numériques mono et multidimensionelles. / The present work is dedicated to the numerical approximation of the M1 moments model solutions for radiative transfer. The objective is to develop efficient and accurate numerical solvers, able to provide with precise and robust computations of flows where radiative transfer effects are important. With this aim, several numerical methods have been considered in order to derive numerical schemes based on Godunov type solvers. A particular attention has been paid to solvers preserving the stationary contact waves. Namely, a relaxation scheme and a HLLC solver are presented in this thesis. The robustness of each of these solvers has been established (radiative energy positivity and radiative flux limitation). Several numerical experiments in one and two space dimensions validate the developed methods and outline their interest.
260

Structure thermique, composition, dynamique de l’atmosphère et évolution à long-terme des exoplanètes irradiées / Thermal structure, composition, atmospheric dynamics and long-terme evolution of irradiated exoplanets

Parmentier, Vivien 17 June 2014 (has links)
Plus d’un millier d’exoplanètes ont été découvertes depuis une dizaine d’années. Plus incroyable encore, nous pouvons maintenant caractériser les atmosphères de ces mondes lointains. Des spectres de Jupiter-chauds tels que HD 189733b et HD 209458b et de planètes similaires à Neptune telles que GJ1214b sont déjà disponibles et ceux de planètes plus petites le seront bientôt. La plupart des observations caractérisent l’état moyen de l’atmosphère. Pour les cas les plus favorables, l’observation des courbes de phase et la technique de cartographie par éclipse secondaire permettent d’obtenir une résolution en longitude et en latitude. Les planètes les plus proches de leurs étoiles sont aussi les plus faciles à observer. Ces mondes chauds sont radicalement différents des exemples que nous avons dans le système solaire. Modéliser correctement leurs atmosphères est un défi à relever pour comprendre les observations présentes et à venir. Durant cette thèse, j’ai développé des modèles de différente complexité pour comprendre les interactions entre la structure thermique, la composition, la circulation atmosphérique et l’évolution à long terme des exoplanètes irradiées. La forte luminosité de leur étoile hôte détermine le climat de ces planètes. Elle engendre une circulation atmosphérique qui maintient l’atmosphère dans un état de déséquilibre thermique et chimique, affectant son évolution. Avec les futurs instruments de nombreuses autres planètes vont être découvertes et caractérisées. Nos modèles seront testés sur une large diversité de planètes, ouvrant les portes de la climatologie aux exoplanètes. / More than a thousand exoplanets have been discovered over the last decade. Perhaps more excitingly, probing their atmospheres has become possible. We now have spectra of hot Jupiters like HD 189733b and HD 209458b, of Neptune-like planets like GJ1214b and even smaller planets are within reach. Most exoplanet atmospheric observations are averaged spatially, often over a hemi- sphere (during secondary eclipse) or over the limb of the planet (during transit). For favorable targets, longitudinal and latitudinal resolution can also be obtained with phase curve and secondary eclipse mapping techniques respectively. The closer the planet orbits to its star, the easier it is to observe. These hot planets strongly differ from the examples we have in our solar-system. Proper models of their atmospheres are challenging yet necessary to understand current and future observations. In this thesis, I use a hierarchy of atmospheric models to understand the interactions between the thermal structure, the composition, the atmospheric circulation and the long-term evolution of irradiated planets. In these planets, the large stellar irradiation dominates the energy budget of the atmosphere. It powers a strong atmospheric circulation that transports heat and material around the planet, driving the atmosphere out of thermal and chemical equilibrium and affecting its long-term evolution. Future instruments (Gaia, SPIRou, CHEOPS, TESS, PLATO etc) will discover many more planets that the next generation of telescopes (GMT, TMT, E-ELT or JWST) will characterize with an unprecedented accuracy. Models will be tested on a large sample of planets, extending the study of climates to exoplanets.

Page generated in 0.0933 seconds