Spelling suggestions: "subject:"radical dde jacobson"" "subject:"radical dde jacobsoni""
11 |
Algorithms for finite rings / Algorithmes pour les anneaux finisCiocanea teodorescu, Iuliana 22 June 2016 (has links)
Cette thèse s'attache à décrire des algorithmes qui répondent à des questions provenant de la théorie des anneaux et des modules. Nous restreindrons essentiellement notre étude à des algorithmes déterministes, en temps polynomial, ainsi qu'aux anneaux et modules finis. Le premier des principaux résultats de cette thèse concerne le problème de l'isomorphisme entre modules : nous décrivons deux algorithmes distincts qui, étant donnée un anneau fini R et deux R-modules M et N finis, déterminent si M et N sont isomorphes. S'ils le sont, les deux algorithmes exhibent un tel isomorphisme. De plus, nous montrons comment calculer un ensemble de générateurs de taille minimale pour un module donné, et comment construire des couvertures projectives et des enveloppes injectives. Nous décrivons ensuite des tests mettant en évidence le caractère simple, projectif ou injectif d'un module, ainsi qu'un test constructif de l'existence d'un homomorphisme demodules surjectif entre deux modules finis, l'un d'entre eux étant projectif. Par contraste, nous montrons le résultat négatif suivant : le problème consistant à tester l'existence d'un homomorphisme de modules injectif entre deux modules, l'un des deux étant projectif, est NP-complet.La dernière partie de cette thèse concerne le problème de l'approximation du radical de Jacobson d'un anneau fini. Il s'agit de déterminer un idéal bilatère nilpotent tel que l'anneau quotient correspondant soit \presque" semi-simple. La notion de \semi-simplicité approchée" que nous utilisons est la séparabilité. / In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis concerns the module isomorphism problem: we describe two distinct algorithms that, given a finite ring R and two finite R-modules M and N, determine whether M and N are isomorphic. If they are, the algorithms exhibit such a isomorphism. In addition, we show how to compute a set of generators of minimal cardinality for a given module, and how to construct projective covers and injective hulls. We also describe tests for module simplicity, projectivity, and injectivity, and constructive tests for existence of surjective module homomorphisms between two finite modules, one of which is projective. As a negative result, we show that the problem of testing for existence of injective module homomorphisms between two finite modules, one of which is projective, is NP-complete. The last part of the thesis is concerned with finding a good working approximation of the Jacobson radical of a finite ring, that is, a two-sided nilpotent ideal such that the corresponding quotient ring is \almost" semisimple. The notion we use to approximate semisimplicity is that of separability.
|
12 |
Identidades polinomiais graduadas de matrizes triangulares. / Graded polynomial identities of triangular matrices.BORGES, Alex Ramos. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:53:31Z
No. of bitstreams: 1
ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5) / Made available in DSpace on 2018-08-06T14:53:31Z (GMT). No. of bitstreams: 1
ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5)
Previous issue date: 2012-12 / Neste trabalho serão estudadas as graduações e identidades polinomiais graduadas
da álgebra Un(K) das matrizes triangulares superiores n×n sobre um corpo K, o qual
será sempre in nito. Primeiramente, será estudado o caso n = 2, para o qual será
mostrado que existe apenas uma graduação não trivial e serão descritos as identidades,
as codimensões e os cocaracteres graduados. Para o caso n qualquer, serão estudadas
as identidades e codimensões graduadas, considerando-se a Zn-graduação natural de
Un(K). Finalmente, será apresentada uma classi cação das graduações de Un(K) por
um grupo qualquer. / In this work we study the gradings and the graded polynomial identities of the
upper n × n triangular matrices algebra Un(K) over a eld K, which is always in nity.
The case n = 2 will be rstly studied, for which will be shown that there is only
one nontrivial grading and we shall describe the graded identities, codimensions and
cocharacters. For the general n case, we shall study graded identities and codimensions,
considering the natural Zn-grading of Un(K). Finally, we will present a classi cation
of the gradings of Un(K) by any group.
|
Page generated in 0.0549 seconds