• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 1
  • Tagged with
  • 25
  • 25
  • 17
  • 13
  • 12
  • 10
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Retention and management of stormwater runoff with rain gardens and rainwater harvesting systems

Schlea, Derek Alan 27 July 2011 (has links)
No description available.
12

Water Balance of Retrofit, Right-of-way Rain Gardens

Kosmerl, Paul F. 22 June 2012 (has links)
No description available.
13

Implementering av öppna dagvattenanläggningar i innerstaden: En studie för att undersöka lämpligheten med öppna dagvattenlösningar i det befintliga stadsrummet

Johansson, Edd, Stenberg, Sofia January 2014 (has links)
Morgondagens samhällen står inför stora utmaningar såsom att hantera den ökande mängden intensiva och extrema nederbördstillfällen som förväntas att komma i framtiden. Lösningen finns i att planera och tänka på helheten om hur städerna på bästa sätt kan utformas med hjälp av funktionella öppna dagvattenlösningar för att ge en bra och effekt avrinning. Det gäller också att skapas förståelse att öppna dagvattensystem bidrar med positiva effekter till samhället, t.ex. genom att bli en resurs för stadens vegetation och grönområden och därav åstadkomma grönare och vackrare städer (Hållbar dag- och dränvattenhantering, 2011)och som gynnar folks hälsa(Viklander & Blecken 2012).Det urbana kretsloppet, skriver Butler & Davies (2011), ersätter en del av det naturliga kretsloppet och Lidström (2012) förklarar att det urbana kretsloppet lånar vatten från det naturliga och skapar då en extra loop för vattnets väg genom cirkel. Butler & Davies (2011) förklarar hur viktigt det är att det finns en förståelse kring konsekvenserna som uppstår när en del av det naturliga hydrologiska kretsloppet ersätts med en artificiell del för den urbana miljön. Lidström (2012) skriver att i naturen när det regnar och vattnet faller på en naturlig yta återvänder del av regnvattnet genom evapotranspiration och så vidare. Däremot i den urbana miljön som till viss del har en likande process fast med skillnaden att regn som fallit på en hårdgjord yta i regel blir förorenat genom att olika ytliggande, lyftburna ämnen och partiklar fastnar på vattendroppen. En av de större skillnaderna mellan det urbana och naturliga hyrdrologiska kretsloppet är reningsgraden. I det urbana hyrdrologiska kretsloppet är reningsprocessen i en mer koncentradform: reningsverken. Och i den naturliga hyrdrologiska kretsloppet är naturen i sig själv som renar vattnet. Genom att förmedla kunskap till människor och låta medborgare ha möjlighet att påverka hur införandet av Rain gardens sker kommer mycket av den misstänksamhet och skepsis som tidigare fanns att övergå i positiva åsikter. Mycket tack vare de flertalet mervärden som staden gagnar. De värden som uppstår kommer gynna den sociala aspekten i staden och bidra med ökade samhällsvinter. Bland annat genom att folkhälsan på sikt kan öka, rening av dagvattnet samt fördröjning som uppstår hjälper till att minska belastningen på reningsverken. På så sätt minskar risken för översvämningar i framtiden. / Tomorrow's communities are facing major challenges such as managing the increasing amount of intense and extreme rain water occasions that are expected to increase due to climate changes. The solution is to plan and think about the whole of how cities can best be designed, using functional open storm water solutions to give a good effect and runoff. It is also important to create an understanding that the open storm water systems contribute positive effects to society, such as by becoming a resource for the city's vegetation and green spaces, and hence achieve greener and more beautiful cities (Hållbar dag- och dränvattenhantering, 2011) and that increases people's health (Viklander & Blecken 2012).The urban cycle, writes Butler & Davies (2011), replaces part of the natural cycle and Lidström (2012) explains that the urban cycle borrows water from the natural and then creates an extra loop of water through the circle. Butler & Davies (2011) explains how important it is that there is an understanding of the consequences that occur when a part of the natural hydrologic cycle is replaced with an artificial part of the urban environment.Lidström (2012), writes that in nature, when it rains and the water falls on a natural surface returning part of the rain water through evapotranspiration, and so on. In contrast, in the urban environment that to some extent has a similar process but with the difference that the rain falling on a hard surface usually becomes contaminated by various substances and particles stick to the water droplet. One of the major differences between the urban and natural hydrological cycle is the degree of purification. In the urban hydrological cycle is the purification process in a more concentrated form: treatment plants. And in the natural hydrological cycle is nature itself that purify the water.By imparting knowledge to the citizens and letting them have an opportunity to influence the implementation of Rain gardens in their communities. Thereby might much of the suspicion and skepticism that previously existed might change into constructive opinions towards the plant, much thanks to the added value that the city benefits from the plant. The values received from the plant will benefit the social aspect of the city and contribute to increasing social benefits, including increased public health, sustainable treatment of storm water that helps to reduce the load on treatment plants. This will reduces the risk of flooding in the future.
14

Water Infiltration and Pollutant Rentention Efficiencies in the Ballona Creek Rain Garden

Burkhard, Jamie Lynn 01 April 2018 (has links) (PDF)
Biofiltration systems like rain gardens and bioswales are an important tool for capturing andinfiltrating polluted runoff, but little data exists on their efficiencies within Mediterraneanclimates. A two-year study initiated in 2015 investigated water retention and pollutant loadingand retention in the Ballona Creek Rain Garden (BCRG). This 300 by 3 m biofiltration systemwas constructed by The Bay Foundation in 2011 along Ballona Creek in Culver City, Los AngelesCounty, California. The purpose of the garden was to capture and infiltrate runoff from lightindustrial and commercial operations bordering the Creek, thus reducing pollutants enteringthis waterway and flowing into Santa Monica Bay 9 km downstream. During storm events,runoff enters the garden via five inlets, and when filled, flows into the creek via two outlets.The goal of this study was to sample flows and pollutant concentrations in runoff entering andleaving the garden and then integrate these to calculate mass loading estimates. Flows weremeasured at all inlets and outlets using 90° V-notch weirs outfitted with Hobo water levelsensors to produce hydrographs. The following pollutants were measured at all flowing inletsand outlets two to three times per storm depending on its duration and intensity: fecalindicator bacteria (E. coli and enterococci), total suspended solids, metals (copper, zinc, andlead), and semivolatile hydrocarbons (polyaromatic hydrocarbons, diesel hydrocarbons, andmotor oil hydrocarbons). The summation of load method was used to calculate the mass ofcontaminants entering and leaving the garden for each storm event, and their percent capturewithin the garden. The BCRG was very effective at infiltrating runoff and sequesteringpollutants. The garden’s infiltration rates ranged from 73% to 100% (with 100% for many of thesmaller storms percent retentions were in the 80-90% range for all pollutants, with an average of 90% for allnine pollutants sampled. This suggests rain gardens and other Low Impact Development (LID)systems can be used successfully in urban Mediterranean climates like Los Angeles to promoteinfiltration, capture pollutants, and prevent polluted stormwater from reaching impaired waterbodies.
15

HYDROLOGIC CHARACTERIZATION OF A RAIN GARDEN MITIGATING STORMWATER RUNOFF FROM A COMMERCIAL AREA

McMaine, John T 01 January 2013 (has links)
Impervious surfaces such as roads, sidewalks, and roofs increase the volume of runoff generated in a watershed. Traditional stormwater management techniques emphasize conveyance of runoff away from impervious surfaces in order to reduce flooding. Rain gardens are becoming popular as a different means to manage stormwater in such a way that runoff is captured and infiltrated onsite rather than conveyed offsite. A stormwater management system consisting of a rainwater harvest system, rain garden, and infiltration chamber was built at the Coca-Cola Refreshments USA, Inc. distribution center in Lexington, Kentucky during the fall of 2011. Precipitation, inflow, and water level were measured from May, 2012 to April, 2013 to evaluate the hydrologic performance of the rain garden. The rain garden had a high infiltrative capability and was able to capture and infiltrate 100% of the runoff generated during the study period. The results of the study were used to formulate recommendations for rain garden design and construction in central Kentucky.
16

The Effectiveness of Rain Gardens in regard to Water Management & Infiltration

Ramlo, Lydia Daphne January 2020 (has links)
No description available.
17

Efficiency of sustainable urban drainage systems during flash floods / Effektivitet av hållbara dagvattensystem vid skyfall

Axelsdóttir, Snærós January 2022 (has links)
As the world’s population is migrating more into urban areas, landcover changes follow. Natural pervious areas are being converted to impervious areas, which when subjected to rain generates more stormwater runoff. Stormwater management is a problem that cities today are challenged with, infrastructure is getting older and precipitation patterns are changing due to climate change. Due to climate change extreme precipitation events are likely to increase and therefore increase the probability of urban flooding. Urban flooding can be caused by extreme precipitation events with a short duration, or so-called flash floods. These flash floods can overwhelm the drainage system in place which therefore can cause flooding. This problem has inspired engineers to rethink stormwater management, moving from traditional grey drainage systems to more green and sustainable drainage systems. Sustainable Urban Drainage System (SuDS) are drainage systems that aim to regain the properties of non-urbanised areas, retain the natural hydrological cycle, and have recreational values for the surrounding societies. This study investigated how different SuDS behave when subjected to flash floods. A model of a synthetic case study was built in the Storm Water Management Model (SWMM) and sustainable urban drainage systems implemented. The solutions investigated were bioretention cells, rain gardens, infiltration trenches, green roofs, and permeable pavements. Three different rain events were analysed, all with different precipitation depth but with the same duration of 1 hour. Results showed that bioretention cells could reduce runoff volumes to the highest extent while green roofs could reduce the peak runoff the most. Other results were analysed like efficiency and cost. Bioretention cell came out on top in efficiency but had the highest cost. Overall, all the solutions showed promise in reducing runoff during flash floods, but the reduction capacity goes down with increased precipitation. / När en större del av världens befolkning flyttar in till tätortsområden så medföljer en ändring av markytans beskaffenhet. Vanligtvis genomträngliga ytor omvandlas till hårdgjorda ytor vilket generar mer dagvattenavrinning när de utsätts för regn. Dagvattenhanteringen är en utmaning för många städer idag eftersom infrastrukturen blir äldre och nederbördsmönstren förändras på grund av klimatförändringar. Extrema nederbördshändelser väntas öka med anledning av dessa klimatförändringar och ökar därigenom sannolikheten för översvämningar i städer. Översvämningar i städer kan orsakas av korta nederbördshändelser med hög intensitet, så kallade Skyfall, vilket kan överbelasta dagvattensystemets kapacitet. Det har lett till att ingenjörer ändrat sitt tankesätt på hur dagvatten ska hanteras och börjat gå från konventionella till mer gröna och hållbara dräneringssystem. Hållbar dagvattenhantering är dräneringssystem som syftar till att använda egenskaperna hos naturliga områden, behålla det naturliga hydrologiska kretsloppet och skapa rekreationsvärden för de omkringliggande samhällena. Denna studie har undersökt hur olika hållbara dräneringssystem beter sig när de utsätts för översvämningar. En modell på en syntetisk fallstudie byggdes i Storm Water Management Model (SWMM) där hållbara dräneringssystem implementerades i en urban miljö. Lösningarna som undersöktes var biofilterbäddar, regnträdgårdar, infiltrationsbäddar, gröna tak och permeabla trottoarer. Tre olika nederbördshändelser analyserades, alla med olika nederbördsmängder men med samma varaktighet på en timme. Resultaten visade att biofilterbäddar kunde minska avrinningsvolymerna i största grad medan gröna tak minskade ytavrinningen mest. Effektivitet och kostnad analyserades också. Där visade biofilterbäddarna högst effektivitet men hade den högsta kostnaden. Sammantaget visade det sig att alla lösningar var lovande vad gäller minskning av avrinning under översvämningar, men reduktionskapaciteten minskar med ökad nederbörd.
18

Analysis of Biofiltration Efficiency for Treating Stormwater Runoff from a Parking Facility

Koranchie-Boah, Peter 07 September 2008 (has links)
No description available.
19

Growth Performance of Six Plant Species and Removal of Heavy Metal Pollutants (Cu, Cr, Pb and Zn) in a Field-Scale Bi-Phasic Rain Garden

Florence, Darlene Christina 28 September 2009 (has links)
No description available.
20

Development and Evaluation of a Biphasic Rain Garden for Stormwater Runoff Management

Yang, Hanbae 23 August 2010 (has links)
No description available.

Page generated in 0.0614 seconds