• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 42
  • 24
  • 23
  • 6
  • 6
  • 6
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 242
  • 242
  • 62
  • 59
  • 55
  • 40
  • 39
  • 35
  • 35
  • 32
  • 27
  • 27
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Síntese e funcionalização de nanopartículas de ouro utilizando um modelo de substância húmica comercial / Synthesis and functionalization of gold nanoparticles using a commercial model of humic substance

Cintia Regina Petroni 24 May 2013 (has links)
Corantes orgânicos são uma importante classe de poluentes ambientais, sendo que a natureza da interação de tais espécies com ácidos húmicos determina seu comportamento e destino ambiental. Este trabalho investiga abordagens diferentes para a síntese de nanopartículas de ouro-ácido húmico (NPs Au/AH), o desempenho destas partículas como sensores para a determinação de traço de corantes orgânicos e da natureza da sua interação química com ácidos húmicos por técnicas de espectroscopia Raman intensificada por superfície (surface-enhanced Raman scattering, SERS). As nanopartículas de ouro foram obtidas de forma direta em meio aquoso. A síntese foi realizada na presença de ácido húmico em vários valores de pH e na presença e na ausência de citrato de sódio. Nesta abordagem, o ácido húmico apresenta propósitos diferentes. Na síntese das nanopartículas, ele serve como agente redutor e para a estabilização da superfície, impedindo a coalescência das nanopartículas em meio aquoso. Considerando-se a utilização de nanopartículas como substratos SERS-ativos, o ácido húmico serve como uma fase de extração associada com a plataforma SERS, favorecendo a interação dos corantes orgânicos com as nanopartículas metálicas. Esta abordagem pode ser utilizada para aumentar a sensibilidade e seletividade da técnica SERS e evitar a interferência de outras espécies em solução. É também importante mencionar que o ácido húmico dá origem a um espectro Raman muito fraco e, portanto, não interfere de forma significativa na detecção espectroscópica das espécies de interesse. As NPs Au/AH obtidas foram caracterizadas por espectroscopia eletrônica, microscopia eletrônica de varredura e SERS, a fim de estabelecer uma correlação entre a sua morfologia, plasmon superficial, e seu uso potencial como substratos SERS. As NPs Au/AH foram utilizadas como substratos SERS no estudo de corantes têxteis aniônicos e catiônicos. Os espectros Raman, nestes casos, foram atribuídos ao complexo formado pelo ácido húmico e cada uma das espécies de interesse. Os resultados obtidos revelaram uma dependência significativa entre as propriedades morfológicas e eletrônicas das NPs Au/AH com o procedimento de síntese, e também uma interação preferencial entre as nanopartículas e os corantes catiônicos. Conclui-se que as NPs Au/AH podem proporcionar uma abordagem útil para a caracterização espectroscópica de espécies relevantes para o ambiente e sua interação química com os ácidos húmicos, através do uso da espectroscopia Raman intensificada pela superfície / Organic dyes are an important class on environmental pollutants, and the nature of the interaction of such species with humic acid strongly determines their environmental behavior and fate. This work investigates different approaches for the synthesis of humic acid-gold nanoparticles (HA-AuNP), the performance of these particles as sensors for trace determination of organic dyes and the nature of their chemical interaction with humic acids by surface-enhanced Raman scattering (SERS). The Au nanoparticles were obtained by direct fabrication in aqueous media.The synthesis were carried out in the presence of humic acid at various pH values, and in the presence and absence of sodium citrate. In this approach, humic acid serves different purposes. In the synthesis of the nanoparticles, they serve as reducing agent and for surface stabilization, preventing coalescence of the nanoparticles in aqueous media. Considering the use of the nanoparticles as SERSactive substrates, the humic acid serves as an extraction phase associated with the SERS platform, favoring the interaction of the organic dyes with the metallic nanoparticles. This approach can be used to enhance the sensitivity and selectivity of SERS technique and avoid interference from other species in solution. It is also important to mention that the humic acid gives rise to a very weak Raman spectrum, and therefore does not interfere significantly in the spectroscopic detection of the species of interest. The obtained HA-AuNPs were characterized by electronic spectroscopy, scanning electron microscopy and SERS, in order to establish a correlation between their morphology, surface plasmon, and their potential use as SERS platforms. The HA-AuNPs have been applied as SERS substrates for anionic and cationic textile dyes. The recorded Raman spectra are, in these cases, assigned to the complex formed by the humic acid and each of the species of interest. The obtained results revealed a significant dependence on the morphological and electronic properties of the HA-AuNPs with the synthesis procedure, and also a strong interaction between the nanoparticles and cationic dies. We conclude that HA-AuNP may provide a valuable approach for the spectroscopic characterization of environmentally relevant species and their chemical interaction with humic acids, through the use of surface enhanced Raman spectroscopy
102

Síntese e funcionalização de nanopartículas de ouro utilizando um modelo de substância húmica comercial / Synthesis and functionalization of gold nanoparticles using a commercial model of humic substance

Petroni, Cintia Regina 24 May 2013 (has links)
Corantes orgânicos são uma importante classe de poluentes ambientais, sendo que a natureza da interação de tais espécies com ácidos húmicos determina seu comportamento e destino ambiental. Este trabalho investiga abordagens diferentes para a síntese de nanopartículas de ouro-ácido húmico (NPs Au/AH), o desempenho destas partículas como sensores para a determinação de traço de corantes orgânicos e da natureza da sua interação química com ácidos húmicos por técnicas de espectroscopia Raman intensificada por superfície (surface-enhanced Raman scattering, SERS). As nanopartículas de ouro foram obtidas de forma direta em meio aquoso. A síntese foi realizada na presença de ácido húmico em vários valores de pH e na presença e na ausência de citrato de sódio. Nesta abordagem, o ácido húmico apresenta propósitos diferentes. Na síntese das nanopartículas, ele serve como agente redutor e para a estabilização da superfície, impedindo a coalescência das nanopartículas em meio aquoso. Considerando-se a utilização de nanopartículas como substratos SERS-ativos, o ácido húmico serve como uma fase de extração associada com a plataforma SERS, favorecendo a interação dos corantes orgânicos com as nanopartículas metálicas. Esta abordagem pode ser utilizada para aumentar a sensibilidade e seletividade da técnica SERS e evitar a interferência de outras espécies em solução. É também importante mencionar que o ácido húmico dá origem a um espectro Raman muito fraco e, portanto, não interfere de forma significativa na detecção espectroscópica das espécies de interesse. As NPs Au/AH obtidas foram caracterizadas por espectroscopia eletrônica, microscopia eletrônica de varredura e SERS, a fim de estabelecer uma correlação entre a sua morfologia, plasmon superficial, e seu uso potencial como substratos SERS. As NPs Au/AH foram utilizadas como substratos SERS no estudo de corantes têxteis aniônicos e catiônicos. Os espectros Raman, nestes casos, foram atribuídos ao complexo formado pelo ácido húmico e cada uma das espécies de interesse. Os resultados obtidos revelaram uma dependência significativa entre as propriedades morfológicas e eletrônicas das NPs Au/AH com o procedimento de síntese, e também uma interação preferencial entre as nanopartículas e os corantes catiônicos. Conclui-se que as NPs Au/AH podem proporcionar uma abordagem útil para a caracterização espectroscópica de espécies relevantes para o ambiente e sua interação química com os ácidos húmicos, através do uso da espectroscopia Raman intensificada pela superfície / Organic dyes are an important class on environmental pollutants, and the nature of the interaction of such species with humic acid strongly determines their environmental behavior and fate. This work investigates different approaches for the synthesis of humic acid-gold nanoparticles (HA-AuNP), the performance of these particles as sensors for trace determination of organic dyes and the nature of their chemical interaction with humic acids by surface-enhanced Raman scattering (SERS). The Au nanoparticles were obtained by direct fabrication in aqueous media.The synthesis were carried out in the presence of humic acid at various pH values, and in the presence and absence of sodium citrate. In this approach, humic acid serves different purposes. In the synthesis of the nanoparticles, they serve as reducing agent and for surface stabilization, preventing coalescence of the nanoparticles in aqueous media. Considering the use of the nanoparticles as SERSactive substrates, the humic acid serves as an extraction phase associated with the SERS platform, favoring the interaction of the organic dyes with the metallic nanoparticles. This approach can be used to enhance the sensitivity and selectivity of SERS technique and avoid interference from other species in solution. It is also important to mention that the humic acid gives rise to a very weak Raman spectrum, and therefore does not interfere significantly in the spectroscopic detection of the species of interest. The obtained HA-AuNPs were characterized by electronic spectroscopy, scanning electron microscopy and SERS, in order to establish a correlation between their morphology, surface plasmon, and their potential use as SERS platforms. The HA-AuNPs have been applied as SERS substrates for anionic and cationic textile dyes. The recorded Raman spectra are, in these cases, assigned to the complex formed by the humic acid and each of the species of interest. The obtained results revealed a significant dependence on the morphological and electronic properties of the HA-AuNPs with the synthesis procedure, and also a strong interaction between the nanoparticles and cationic dies. We conclude that HA-AuNP may provide a valuable approach for the spectroscopic characterization of environmentally relevant species and their chemical interaction with humic acids, through the use of surface enhanced Raman spectroscopy
103

Espalhamento Raman em Pontos Quânticos de InGaAs / Raman scattering in quantum dots InGaAs

Alfredo Rodrigues Vaz 26 November 1999 (has links)
Ilhas de InxGa1-xAs são de grande interesse no desenvolvimento tecnológico de lasers de diodos e diodos emissores de luz. As ilhas de InxGa1-xAs investigadas neste trabalho foram crescidas sobre um substrato semi-isolante de GaAs (001) pelo método de auto-organização usando epitaxia de feixe molecular. Este tipo de ilha, quando isolada e de pequeno tamanho, é considerada um ponto quântico ou sistema zero-dimensional. As amostras foram caracterizadas através do uso da microscopia de força atômica. A densidade e o tamanho dos pontos aumenta com a diminuição da fração molar de In, resultando em uma maior cobertura para o caso de x = O, 25. As características principais dos espectros Raman são os picos que correspondem aos modos LO e TO do substrato de GaAs. Duas estruturas adicionais aparecem no espectro: um pico estreito em 222 cm- 1 e uma banda larga de mais alta energia, que só é resolvida para x = O, 25, centrada em 245 cm-1. O pico em 222 cm-1 é provavelmente devido ao fônon LA(X) do GaAs normalmente proibido, induzido por defeitos. Para identificar a banda larga foi construído um modelo que considera: (i) a frequência Raman do modo tipo- InAs com caráter de LO como constante com a variação de x no InGaAs 3-D; (ii) efeitos de confinamento não afetam a frequência Raman dado ao tamanho dos pontos quânticos das amostras deste trabalho; (iii) A tensão escala com x e o valor máximo ocorre para o composto binário InAs. Este modelo permite prever um intervalo de frequências para os pontos quânticos. O valor medido, 245 cm- 1, está dentro deste intervalo e portanto foi atribuído ao modo tipo-InAs dos pontos quânticos de In0,25Ga0,75As Considerações de simetria reforçam esta designação. Contribuições adicionais de fônons foram consideradas no intervalo de energia de interesse. Para analisar estas contribuições, foi feito um estudo detalhado dos fônons induzidos por desordem em camadas de GaAs, e espalhamento Raman de As cristalino e amorfo. A desordem foi produzida através da erosão por laser e a amostra de As foi formada por um processo de oxidação de um filme de AlAs. Comparação dos espectros Raman permitiu concluir que não houve contribuição de fônons induzidos por desordem no espectro do ponto quântico, seja de GaAs ou arsênio. / InxGa1-x As islands are interesting for use in Laser diode and light-emitting diode technology. The InxGa1-x As islands investigated in this work were grown on semi-insulating (001) GaAs substrates by the self-organization method using molecular beam epitaxy. This type of island, when isolated and of small size, is considered as a quantum dot or zero-dimensional system. The samples were characterized by use of atomic force microscopy. The dot density and size were seen to increase as the In molar fraction decreased, resulting in a large dot­ coverage in the case of x = 0.25. The Raman spectra main features were the peaks corresponding to the LO and TO modes of GaAs-substrate. Second order structures were also present around 520 cm-1 (160 cm-1) for optical (acoustic) vibration of GaAs. Two additional structures appear as a sharp peak at 222 cm- 1 and higher energy broad band, which is resolved only for x = 0.25, at 245 cm- 1. The peak in 222 cm-1 is probably due to the normally forbidden GaAs LA(X) phonon induced by defects. To assign the broad band a model was constructed that considers: (i) the Raman frequency of the InAs-like mode with LO character as constant with x in bulk I nGaAs; (ii) confinement effects for the large dots formed has negligible effects in the quantum dot Raman frequency; (iii) The strain scale with x, the maximun value corresponds to that obtained for InAs. This model allowed to predict a range of frequencies for the dots. The value measured, 245 cm- 1, fit into this range and is, thus, attributed to the InAs-like mode of the In0.25Ga0.75As quantum dots. Selection rules arguments reinforces this assignment. Several additional contributions in the frequency range of interest were considered. In order to analyze those contributions, a detailed study of disorder induced phonons in GaAs, and Raman scattering of As-crystaline and amorphous, was realized. The disorder was produced by laser ablation and the As sample was formed by an oxidation process of an A1As film. Comparison of the Raman spectra allowed to conclude that neither As or GaAs disorder induced phonons contribute to the quantum-dot spectrum.
104

Propriedades vibracionais e elétricas da Perovskita dupla ordenada Ba2BiSbO6 / THE VIBRATIONAL AND ELECTRIC PROPERTIES OF THE DOUBLE ORDERED COMPLEX PEROVSKITE Ba2BiSbO6

Castro Junior, Manoel Carvalho 11 July 2008 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-06T17:54:56Z No. of bitstreams: 1 ManoelCastroJunior.pdf: 27945516 bytes, checksum: 6ae82c3bdbaa01509138f1674855826a (MD5) / Made available in DSpace on 2017-06-06T17:54:56Z (GMT). No. of bitstreams: 1 ManoelCastroJunior.pdf: 27945516 bytes, checksum: 6ae82c3bdbaa01509138f1674855826a (MD5) Previous issue date: 2008-07-11 / Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) / In this work were performed investigations about the vibrational and electric properties of the double ordered complex perovskite Ba2BiSbO6 , for diferent values of temperature, hydrostatic pressure and oscillating field frequency. The vibrational properties were investigated using Raman spectroscopy and the classical phonon calculation by FG Wilson method. The Raman spectra were acquired in the temperature range between 10 K and 573 K and at pressures up to 7.67 GPa. Both structural phase transition observed by Neutrons and X-ray difraction investigations were observed in the temperature dependent Raman spectra. The phase transition R3(S26)→Fm3m (O5h) was observed at around 515 K by the extinction of a mode of the rhombohedral phase localized at around 63 cm-1 and subtle changes in the temperature dependence of the wavenumbers and integrated area of the observed modes. The R3(S26)→I2/m(C52h) phase transition was observed between 250 and 260 K by the change in the intensities of the stretching and bending SbO7-6 octahedral modes. At 10 K was observed a new mode belonging to the monoclinic phase and assigned as Ag. The assignment of the modes in the rhombohedral, monoclinic and cubic phases was performed with basis on the classical phonons calculations by the FG Wilson method. Under hydrostatic pressure the R3(S26)→I2/m(C52h) phase transition was observed by the change in the slope of the temperature dependence of the wavenumbers of the observed modes. The electrical properties were obtained by impedance spectroscopy between room temperature and 560 K. The analysis of the frequency dependence of the imaginary part of the electrical modulus and impedance show that, at low temperatures, only a relaxation process due to the bulk is observed whose the relaxation frequency is thermally activated and follows an Arrhenius law behavior. When the temperature arises, a second relaxation process, whose relaxation frequency is also thermally activated, is observed due, probably, to the grain boundary. The phase transition R3(S26)→Fm3m (O5h) was not observed at high temperatures in the dielectric constant. / Neste trabalho foram investigadas as propriedades vibracionais e elétricas da perovskita dupla ordenada Ba2BiSbO6 em função da temperatura, pressão hidrostática e freqüência do campo oscilante. As propriedades vibracionais do Ba2BiSbO6 foram investigadas por espectroscopia Raman e pelo cálculo clássico de fônons através do método FG de Wilson. Os espectros Raman foram determinados no intervalo de temperatura compreendido entre 10 K e 573 K e para pressões hidrostáticas até 7,67 GPa. Em função da temperatura os espectros Raman mostraram ambas as transições de fase sofridas pelo material propostas pela difração de nêutrons e raios-X em amostras policristalinas. A transição de fase R3(S26)→Fm3m (O5h) foi observada por volta de 515 K através do desaparecimento de um modo da fase romboédrico localizado em torno de 63 cm-1 e por sutis anomalias na dependência do número de onda e área integrada dos modos com a temperatura. A transição de fase R3(S26)→I2/m(C52h) foi observada entre 250 e 260 K pela troca de intensidades entre os modos de stretching e bending do octaedro de SbO7-6 . Para T = 10 K um novo modo em 670 cm-1 foi claramente observado e caracterizado como modo da fase monoclínica de simetria Ag. A classificação dos modos da fase monoclínica, romboédrica e cúbica foi feita com base no cálculo clássico dos fônons pelo método FG de Wilson. Em função da pressão hidrostática, a transição R3(S26)→I2/m(C52h) foi observada através da mudança de inclinação na dependência com a temperatura do número de onda dos modos. As propriedades elétricas do Ba2BiSbO6 foram obtidas através da espectroscopia de impedância no intervalo compreendido entre a temperatura ambiente e 560 K. A análise do módulo elétrico e impedância mostrou que para baixas temperaturas há apenas um processo de relaxação devido ao bulk, termicamente ativado, cuja freqüência de relaxação segue uma lei de Arrhenius. Para altas temperaturas foi observado um novo processo de relaxação, com freqüência de relaxação também crescente, seguindo uma lei de Arrhenius, provavelmente devido a efeitos de contorno de grãos. A transição de fase R3(S26)→Fm3m (O5h) não foi observada através de anomalias na constante dielétrica.
105

Synthesis, Processing, and Fundamental Phase Formation Study of CZTS Films for Solar Cell Applications

Awadallah, Osama 02 April 2018 (has links)
Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) kesterite compound has attracted much attention in the last years as a new abundant, low cost, and environmentally benign material with desirable optoelectronic properties for Photovoltaic (PV) thin film solar cell applications. Among various synthesis routes for CZTS thin films, sol-gel processing is one of the most attractive routes to obtain CZTS films with superior quality and low cost. In this study, sol-gel sulfurization process parameters for CZTS thin films were systematically investigated to identify the proper process window. In addition, temperature dependent Raman spectroscopy was employed to monitor the CZTS sulfurization process in real time and gain fundamental information about the phase formation and degradation mechanisms of CZTS under the relevant processing conditions. It was found that CZTS thin films with different Cu stoichiometry can be prepared using parts-per-million (ppm) level of hydrogen sulfide (H2S) gas as opposed to high percentage level of H2S (e.g., ≥ 5%) in all previous studies. Samples sulfurized at lower temperatures of ~350°C and 125°C revealed the formation of CZTS phase as confirmed by XRD, Raman micro-spectroscopy, and sheet resistance measurement. Local EDS analysis indicates that CZTS films prepared at those low temperatures have a near-stoichiometric composition and are sometimes accompanied by the formation of Cu2-xS phase(s). Also, stoichiometric and Cu-rich precursor solutions tend to yield CZTS samples with better crystallinity and superior optical properties compared with the Cu-deficient solution. Moreover, in situ Raman monitoring of phase formation of CZTS material was carried out from room temperature up to 350°C in a 100 ppm H2S+4%H2+N2 gas mixture. The results showed that CZTS phase formed in about 30 min via a direct reaction between the metal oxide precursor film and the H2S-H2 gas mixture at an intermediate temperature of 350°C and remained stable upon extended exposure. In comparison, at a lower temperature (170°C), the oxide precursor film had to be reduced first (e.g., in 4% H2/N2 forming gas) and then the CZTS phase emerged. However, continued sulfurization at a lower temperature (e.g., 170°C) led to the disintegration of CZTS and the formation of CuS impurity, which remains stable upon cooling the sample down to room temperature. Furthermore, results of in situ Raman monitoring of CZTS films in an oxygen-rich atmosphere at elevated temperatures up to 600°C suggested that CZTS oxidizes first at ~400°C to form tin oxide (SnO2) and binary sulfides of mainly copper sulfide (Cu2-xS) and zinc sulfide (ZnS). Then, at temperatures higher than 400°C, the remaining sulfides oxidize to form zinc oxide (ZnO). The outcomes of the current study set the directions for optimizing the CZTS film structure and stoichiometry toward developing low cost and high-performance CZTS solar cells in future.
106

Photolithographic and Replication Techniques for Nanofabrication and Photonics

Kostovski, Gorgi, gorgi.kostovski@rmit.edu.au January 2008 (has links)
In the pursuit of economical and rapid fabrication solutions on the micro and nano scale, polymer replication has proven itself to be a formidable technique, which despite zealous development by the research community, remains full of promise. This thesis explores the potential of elastomers in what is a distinctly multidisciplinary field. The focus is on developing innovative fabrication solutions for planar photonic devices and for nanoscale devices in general. Innovations are derived from treatments of master structures, imprintable substrates and device applications. Major contributions made by this work include fully replicated planar integrated optical devices, nanoscale applications for photolithographic standing wave corrugations (SWC), and a biologically templated, optical fiber based, surface-enhanced Raman scattering (SERS) sensor. The planar devices take the form of dielectric rib waveguides which for the first time, have been integrated with long-period gratings by replication. The heretofore unemployed SWC is used to demonstrate two innovations. The first is a novel demonstration of elastomeric sidewall photolithographic mask, which exploits the capacity of elastomers to cast undercut structures. The second demonstrates that the corrugations themselves in the absence of elastomers, can be employed as shadow masks in a directional flux to produce vertical stacks of straight lines and circles of nanowires and nanoribbons. The thesis then closes by conceptually combining the preceding demonstrations of waveguides and nanostructures. An optical fiber endface is em ployed for the first time as a substrate for patterning by replication, wherein the pattern is a nanostructure derived from a biological template. This replicated nanostructure is used to impart a SERS capability to the optical fiber, demonstrating an ultra-sensitive, integrated photonic device realized at great economy of both time and money, with very real potential for mass fabrication.
107

Interactions in Dye-sensitized Solar Cells

Greijer Agrell, Helena January 2003 (has links)
<p>The interactions between the molecular constituents in dye-sensitized solar cells were studied with UV-VIS and IR spectroscopy, Raman scattering, conductivity and electron accumulation measurements.</p><p>From stability studies of the dye, bis(tetrabutylammonium)cis-bis(thiocyanato) bis(2,2’-bipyridine-4-carboxylic acid, 4’-carboxylate) ruthenium(II), in the complete solar cell, the thiocyanate ion ligand was found to be lost from the dye. A method was developed to study mechanisms in a sealed dye-sensitized solar cell using resonance Raman scattering (RRS). RRS studies of a complete dye-sensitized solar cell including iodine and lithium iodide in the electrolyte indicate that triiodide exchange the SCN<sup>-</sup> ligand of the dye. It was proposed that an ion pair Li<sup>+</sup>…I<sub>3</sub><sup>-</sup> formation occurred, which, by a reduced electrostatic repulsion between I<sub>3</sub><sup>-</sup> and SCN<sup>-</sup> facilitated the exchange of these anions at Ru(II) of the dye. The additive 1-methylbenzimidazole suppressed the SCN<sup>-</sup>/I<sub>3</sub><sup>-</sup> ligand exchange by forming a complex with Li<sup>+</sup>.</p><p>In order to study charge transport in nanostructured TiO<sub>2</sub> films permeated with electrolyte, a technique was developed for determining activation energies of conduction, electron accumulation and effective mobility. Two regions were distinguished from the relation between conductivity and electron concentration. In the first region (~1-20 electrons per TiO<sub>2</sub> particle), which resembles best the region where the nanostructured dye-sensitized solar cell operates, the results can be fitted to some extent with a trapping/detrapping or a hopping model for charge transport, but not with a conduction band model. For the second region (> 20 electrons per TiO<sub>2</sub> particle), charge transport by electrons in the conduction band seems to be the most applicable model.</p><p>Through this work many effects from the interplay between the solar cell components were observed. These observations emphasize the importance of well-balanced interactions in dye-sensitized solar cells.</p>
108

Interactions in Dye-sensitized Solar Cells

Greijer Agrell, Helena January 2003 (has links)
The interactions between the molecular constituents in dye-sensitized solar cells were studied with UV-VIS and IR spectroscopy, Raman scattering, conductivity and electron accumulation measurements. From stability studies of the dye, bis(tetrabutylammonium)cis-bis(thiocyanato) bis(2,2’-bipyridine-4-carboxylic acid, 4’-carboxylate) ruthenium(II), in the complete solar cell, the thiocyanate ion ligand was found to be lost from the dye. A method was developed to study mechanisms in a sealed dye-sensitized solar cell using resonance Raman scattering (RRS). RRS studies of a complete dye-sensitized solar cell including iodine and lithium iodide in the electrolyte indicate that triiodide exchange the SCN- ligand of the dye. It was proposed that an ion pair Li+…I3- formation occurred, which, by a reduced electrostatic repulsion between I3- and SCN- facilitated the exchange of these anions at Ru(II) of the dye. The additive 1-methylbenzimidazole suppressed the SCN-/I3- ligand exchange by forming a complex with Li+. In order to study charge transport in nanostructured TiO2 films permeated with electrolyte, a technique was developed for determining activation energies of conduction, electron accumulation and effective mobility. Two regions were distinguished from the relation between conductivity and electron concentration. In the first region (~1-20 electrons per TiO2 particle), which resembles best the region where the nanostructured dye-sensitized solar cell operates, the results can be fitted to some extent with a trapping/detrapping or a hopping model for charge transport, but not with a conduction band model. For the second region (&gt; 20 electrons per TiO2 particle), charge transport by electrons in the conduction band seems to be the most applicable model. Through this work many effects from the interplay between the solar cell components were observed. These observations emphasize the importance of well-balanced interactions in dye-sensitized solar cells.
109

Ultrafast Cooperative Phenomena in Coherently Prepared Media: From Superfluorescence to Coherent Raman Scattering and Applications

Gombojav, Ariunbold 2011 May 1900 (has links)
Technological progress in commercializing ultrafast lasers and detectors has allowed realization of cooperative processes on an ultrashort time scale, which demand a re-evaluation of the conventional cooperative phenomena with a new insight. Ultrafast cooperative phenomena in coherently prepared media and various applications of superfluorescence and coherent Raman scattering are studied in this dissertation. In particular, a simple theoretical testimony on analogy between a cooperative emission and coherent Raman scattering is presented by offering an opportunity to perform parallel research on these two processes from a unified point of view. On one hand, the superfluorescent pulse with a time duration of a few tens of picoseconds (ps) from alkali metal vapor is observed for the first time, even though cooperative phenomena in atomic vapor have been extensively studied for more than five decades. A dense rubidium vapor pumped by ultrashort (100 femtosecond, fs) pulses allows a realization of the ultrafast superfluorescence while a time-resolved study of superfluorescence is accomplished by using a streak camera with 2 ps time resolution. Experimental research on quantum nature of cooperative emissions has been “frozen” over the years (three decades) possibly because of the technical difficulties. Quantum fluctuations of superfluorescence development are explored experimentally by taking advantage of the ultra fast streak camera. Presumable applications of the superfluorescent pulse in e.g., a remote sensing, and an ultraviolet upconversion of the input infrared laser pulse are presented. The quantum interference due to different excitation pathways is revealed by the temporal coherent control technique while observing interferometric signals from alkali metal vapors. On the other hand, a new spectroscopic technique based on ultrafast coherent Raman scattering is developed. The key advantage of the presented technique is to suppress the non-resonant background noise which usually obscures possible applications of the other conventional coherent Raman techniques in practice. A reduction of the background noise is achieved by shaping and delaying the third pulse which probes the coherence of the medium (i.e., an enhancement of specific vibrations of the target molecules in unison) firstly prepared by two broadband pulses. We demonstrate a robustness and superiority of signal-to-noise ratio of the developed technique by identifying as few as 10000 bacterial spores at a single laser shot level. Finally, several comparative studies between cooperative and uncooperative processes are presented. A picosecond cooperative phenomenon in a three-photon resonant medium induced by a single as well as two-color ultrashort pulses is investigated. A time-resolved study shows that a picosecond cooperative effect is crucial in the well-established fields of resonant-enhanced multiphoton ionizations and harmonic generations. We also present a quantitative analysis for spontaneous versus broadband coherent Raman scattering on pyridine molecules. The spontaneous Raman signal is enhanced by 5 orders as a result of cooperative phenomena.
110

Preparation And Surface Modification Of Noble Metal Nanoparticles With Tunable Optical Properties For Sers Applications

Kaya, Murat 01 April 2011 (has links) (PDF)
Metal nanostructures exhibit a wide variety of interesting physical and chemical properties, which can be tailored by altering their size, morphology, composition, and environment. Gold and silver nanostructures have received considerable attention for many decades because of their widespread use in applications such as catalysis, photonics, electronics, optoelectronics, information storage, chemical and biological sensing, surface plasmon resonance and surface-enhanced Raman scattering (SERS) detection. This thesis is composed of three main parts about the synthesis, characterization and SERS applications of shape-controlled and surface modified noble metal nanoparticles. The first part is related to a simple synthesis of shape controlled solid gold, hollow gold, silver, gold-silver core-shell, hollow gold-silver double-shell nanoparticles by applying aqueous solution chemistry. Nanoparticles obtained were used for SERS detection of dye molecules like brilliant cresyl blue (BCB) and crystal violet (CV) in aqueous system. v The second part involves the synthesis of surface modified silver nanoparticles for the detection of dopamine (DA) molecules. Determination of a dopamine molecule attached to a iron-nitrilotriaceticacid modified silver (Ag-Fe(NTA)) nanoparticles by using surface-enhanced resonance Raman scattering (SERRS) was achieved. The Ag-Fe (NTA) substrate provided reproducibility and excellent sensitivity. Experimental results showed that DA was detected quickly and accurately without any pretreatment in nM levels with excellent discrimination against ascorbic acid (AA) (which was among the lowest value reported in direct SERS detection of DA). In the third part, a lanthanide series ion (Eu3+) containing silver nanoparticle was prepared for constructing a molecular recognition SERS substrate for the first time. The procedure reported herein, provides a simple way of achieving reproducible and sensitive SERS spectroscopy for organophosphates (OPP) detection. The sensing of the target species was confirmed by the appearance of an intense SERS signal of the methyl phosphonic acid (MPA), a model compound for nonvolatile organophosphate nerve agents, which bound to the surface of the Ag-Eu3+ nanostructure. The simplicity and low cost of the overall process makes this procedure a potential candidate for analytical control processes of nerve agents.

Page generated in 0.1331 seconds