• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 18
  • 10
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 138
  • 64
  • 47
  • 38
  • 32
  • 28
  • 27
  • 25
  • 24
  • 21
  • 16
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Longitudinal data analysis with covariates measurement error

Hoque, Md. Erfanul 05 January 2017 (has links)
Longitudinal data occur frequently in medical studies and covariates measured by error are typical features of such data. Generalized linear mixed models (GLMMs) are commonly used to analyse longitudinal data. It is typically assumed that the random effects covariance matrix is constant across the subject (and among subjects) in these models. In many situations, however, this correlation structure may differ among subjects and ignoring this heterogeneity can cause the biased estimates of model parameters. In this thesis, following Lee et al. (2012), we propose an approach to properly model the random effects covariance matrix based on covariates in the class of GLMMs where we also have covariates measured by error. The resulting parameters from this decomposition have a sensible interpretation and can easily be modelled without the concern of positive definiteness of the resulting estimator. The performance of the proposed approach is evaluated through simulation studies which show that the proposed method performs very well in terms biases and mean square errors as well as coverage rates. The proposed method is also analysed using a data from Manitoba Follow-up Study. / February 2017
62

Modelos Beta-Binomial/Poisson-Gama para contagens bivariadas repetidas / Beta-binomial/gamma-Poisson regression models for repeated bivariate counts

Lora, Mayra Ivanoff 01 December 2008 (has links)
Em Lora e Singer (Statistics in Medicine, 2008), propusemos um modelo Beta- Binomial/Poisson p-variado para análise dos dados provenientes de um estudo que consistiu em contar o número de tentativas e acertos de um exercício manual com duração de um minuto realizado por doentes de Parkinson, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo leva tais características em consideração, usa uma distribuição adequada para dados de contagem e ainda acomoda a sobredispersão presente na contagem dos acertos. Como generalização, inicialmente, propomos um modelo Beta-Binomial/Poisson-Gama que acomoda sobredispersão também para as contagens dos totais de tentativas, além incluir covariâncias possivelmente diferentes entre as contagens em diversos instantes de avaliação. Neste novo modelo, introduzimos um parâmetro que relaciona o total de tentativas com a probabilidade de acerto, tornando-o ainda mais geral. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Consideramos um outro conjunto de dados provenientes do mesmo estudo para ilustração da metodologia proposta. / In Lora and Singer (Statistics in Medicine, 2008), we proposed a Beta-Binomial/Poisson p-variate model to analyze data from a study which consists in counting the number of trials and successes of a manual exercise in one minute periods, done by Parkinsons disease patients, before and after a training. The purpose was to verify if the training improves the number of trials and the percentage of success, which emphasizes the bivariate aspect of the problem. This model considers these characteristics, uses an adequate distribution to count data and settles the overdispersion suggested in the number os successes. As a generalization, initially, we propose a Beta-Binomial/Poisson-Gama model which also settles the overdispersion suggested by the total number of trials, besides includes possible different covariances between total trial counts in different evaluation instants. In this new model, we introduce a parameter that links the total trials with the success probability, making it even more general. We obtain maximum likelihood estimators for the parameters using an Newton-Raphson algorithm. We consider another data from the same study to illustrate the proposal methodology.
63

Impact of Corruption on Economic Growth : A panel data study of selected African countries

Lawal, Fadekemi January 2019 (has links)
African countries have over the last few decades, experienced a thorny path towards sustained economic growth. Quite a number of researchers have opined that a major factor responsible for their stunted growth path is the prevalence of corruption in the governments of many African countries. However, a group of scholars, called revisionists, have suggested that corruption actually acts as grease in the wheel that ensures the smooth running of an economy, by providing a mechanism to evade inefficient bureaucratic procedures and allow more equitable representation of minority members of the society. With the increasing exposure of African economies to the international community, there is a need to examine the obtainable evidence in relation to corruption and economic growth in African countries. This thesis, therefore, aims to establish the nature of the relationship between corruption and economic growth in the selected African countries. The growth rate of gross domestic product per capita is used to represent the variable, economic growth. The study employs the use of panel data fixed effects and random effect estimation techniques, across 18 countries, over the period of 1997 – 2016. The results show that corruption has a positive relationship with economic growth in the selected African countries. This is in line with the grease in the wheel argument for corruption proposed by revisionists. The results also indicate that corruption has a moderately significant impact on economic growth at 10% level of significance. The literature review suggests that corruption affects economic growth directly and indirectly through mechanisms such as investment (private and public), human capital, openness, and institutional mechanisms, among others.
64

Melhor preditor empírico aplicado aos modelos beta mistos / Empirical best predictor for mixed beta regression models

Zerbeto, Ana Paula 21 February 2014 (has links)
Os modelos beta mistos são amplamente utilizados na análise de dados que apresentam uma estrutura hierárquica e que assumem valores em um intervalo restrito conhecido. Com o objetivo de propor um método de predição dos componentes aleatórios destes, os resultados previamente obtidos na literatura para o preditor de Bayes empírico foram estendidos aos modelos de regressão beta com intercepto aleatório normalmente distribuído. O denominado melhor preditor empírico (MPE) proposto tem aplicação em duas situações diferentes: quando se deseja fazer predição sobre os efeitos individuais de novos elementos de grupos que já fizeram parte da base de ajuste e quando os grupos não pertenceram à tal base. Estudos de simulação foram delineados e seus resultados indicaram que o desempenho do MPE foi eficiente e satisfatório em diversos cenários. Ao utilizar-se da proposta na análise de dois bancos de dados da área da saúde, observou-se os mesmos resultados obtidos nas simulações nos dois casos abordados. Tanto nas simulações, quanto nas análises de dados reais, foram observados bons desempenhos. Assim, a metodologia proposta se mostrou promissora para o uso em modelos beta mistos, nos quais se deseja fazer predições. / The mixed beta regression models are extensively used to analyse data with hierarquical structure and that take values in a restricted and known interval. In order to propose a prediction method for their random components, the results previously obtained in the literature for the empirical Bayes predictor were extended to beta regression models with random intercept normally distributed. The proposed predictor, called empirical best predictor (EBP), can be applied in two situations: when the interest is predict individuals effects for new elements of groups that were already analysed by the fitted model and, also, for elements of new groups. Simulation studies were designed and their results indicated that the performance of EBP was efficient and satisfatory in most of scenarios. Using the propose to analyse two health databases, the same results of simulations were observed in both two cases of application, and good performances were observed. So, the proposed method is promissing for the use in predictions for mixed beta regression models.
65

Modelos de regressão beta-binomial/poisson para contagens bivariadas / Beta-binomial/Poisson regression models for repeated bivariate counts

Lora, Mayra Ivanoff 01 April 2004 (has links)
Propomos um modelo Beta-Binomial/Poisson para dados provenientes de um estudo com doentes de Parkinson, que consistiu em contar durante um minuto quantas tarefas foram realizadas e destas, quantas de maneira correta, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo considera tal aspecto, usa uma distribuição mais adequada a dados de contagem e ainda suporta a sobredispersão presente nos dados. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Ilustramos a aplicação da metodologia desenvolvida aos dados do estudo. / We propose a Beta-Binomial/Poisson model to the data from a study with Parkinson disease patients, which consisted in counting for one minute how many trials were attempted and how many of them were successful, before and after a training period. The main goal was to check if training increased the number of trials and success probability, which emphasizes the bivariate aspect of the problem. This model takes this aspect into account, uses a distribution which is usually more adequate to count data and supports the overdispersion present in the data. We obtain the maximum likelihood estimators using a Newton-Raphson algorithm. For illustration, the methodology is applied to the data from study.
66

Melhor preditor empírico aplicado aos modelos beta mistos / Empirical best predictor for mixed beta regression models

Ana Paula Zerbeto 21 February 2014 (has links)
Os modelos beta mistos são amplamente utilizados na análise de dados que apresentam uma estrutura hierárquica e que assumem valores em um intervalo restrito conhecido. Com o objetivo de propor um método de predição dos componentes aleatórios destes, os resultados previamente obtidos na literatura para o preditor de Bayes empírico foram estendidos aos modelos de regressão beta com intercepto aleatório normalmente distribuído. O denominado melhor preditor empírico (MPE) proposto tem aplicação em duas situações diferentes: quando se deseja fazer predição sobre os efeitos individuais de novos elementos de grupos que já fizeram parte da base de ajuste e quando os grupos não pertenceram à tal base. Estudos de simulação foram delineados e seus resultados indicaram que o desempenho do MPE foi eficiente e satisfatório em diversos cenários. Ao utilizar-se da proposta na análise de dois bancos de dados da área da saúde, observou-se os mesmos resultados obtidos nas simulações nos dois casos abordados. Tanto nas simulações, quanto nas análises de dados reais, foram observados bons desempenhos. Assim, a metodologia proposta se mostrou promissora para o uso em modelos beta mistos, nos quais se deseja fazer predições. / The mixed beta regression models are extensively used to analyse data with hierarquical structure and that take values in a restricted and known interval. In order to propose a prediction method for their random components, the results previously obtained in the literature for the empirical Bayes predictor were extended to beta regression models with random intercept normally distributed. The proposed predictor, called empirical best predictor (EBP), can be applied in two situations: when the interest is predict individuals effects for new elements of groups that were already analysed by the fitted model and, also, for elements of new groups. Simulation studies were designed and their results indicated that the performance of EBP was efficient and satisfatory in most of scenarios. Using the propose to analyse two health databases, the same results of simulations were observed in both two cases of application, and good performances were observed. So, the proposed method is promissing for the use in predictions for mixed beta regression models.
67

Modelos de regressão beta-binomial/poisson para contagens bivariadas / Beta-binomial/Poisson regression models for repeated bivariate counts

Mayra Ivanoff Lora 01 April 2004 (has links)
Propomos um modelo Beta-Binomial/Poisson para dados provenientes de um estudo com doentes de Parkinson, que consistiu em contar durante um minuto quantas tarefas foram realizadas e destas, quantas de maneira correta, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo considera tal aspecto, usa uma distribuição mais adequada a dados de contagem e ainda suporta a sobredispersão presente nos dados. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Ilustramos a aplicação da metodologia desenvolvida aos dados do estudo. / We propose a Beta-Binomial/Poisson model to the data from a study with Parkinson disease patients, which consisted in counting for one minute how many trials were attempted and how many of them were successful, before and after a training period. The main goal was to check if training increased the number of trials and success probability, which emphasizes the bivariate aspect of the problem. This model takes this aspect into account, uses a distribution which is usually more adequate to count data and supports the overdispersion present in the data. We obtain the maximum likelihood estimators using a Newton-Raphson algorithm. For illustration, the methodology is applied to the data from study.
68

Modelos Beta-Binomial/Poisson-Gama para contagens bivariadas repetidas / Beta-binomial/gamma-Poisson regression models for repeated bivariate counts

Mayra Ivanoff Lora 01 December 2008 (has links)
Em Lora e Singer (Statistics in Medicine, 2008), propusemos um modelo Beta- Binomial/Poisson p-variado para análise dos dados provenientes de um estudo que consistiu em contar o número de tentativas e acertos de um exercício manual com duração de um minuto realizado por doentes de Parkinson, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo leva tais características em consideração, usa uma distribuição adequada para dados de contagem e ainda acomoda a sobredispersão presente na contagem dos acertos. Como generalização, inicialmente, propomos um modelo Beta-Binomial/Poisson-Gama que acomoda sobredispersão também para as contagens dos totais de tentativas, além incluir covariâncias possivelmente diferentes entre as contagens em diversos instantes de avaliação. Neste novo modelo, introduzimos um parâmetro que relaciona o total de tentativas com a probabilidade de acerto, tornando-o ainda mais geral. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Consideramos um outro conjunto de dados provenientes do mesmo estudo para ilustração da metodologia proposta. / In Lora and Singer (Statistics in Medicine, 2008), we proposed a Beta-Binomial/Poisson p-variate model to analyze data from a study which consists in counting the number of trials and successes of a manual exercise in one minute periods, done by Parkinsons disease patients, before and after a training. The purpose was to verify if the training improves the number of trials and the percentage of success, which emphasizes the bivariate aspect of the problem. This model considers these characteristics, uses an adequate distribution to count data and settles the overdispersion suggested in the number os successes. As a generalization, initially, we propose a Beta-Binomial/Poisson-Gama model which also settles the overdispersion suggested by the total number of trials, besides includes possible different covariances between total trial counts in different evaluation instants. In this new model, we introduce a parameter that links the total trials with the success probability, making it even more general. We obtain maximum likelihood estimators for the parameters using an Newton-Raphson algorithm. We consider another data from the same study to illustrate the proposal methodology.
69

Extensão do Método de Predição do Vizinho mais Próximo para o modelo Poisson misto / An Extension of Nearest Neighbors Prediction Method for mixed Poisson model

Arruda, Helder Alves 28 March 2017 (has links)
Várias propostas têm surgido nos últimos anos para problemas que envolvem a predição de observações futuras em modelos mistos, contudo, para os casos em que o problema trata-se em atribuir valores para os efeitos aleatórios de novos grupos existem poucos trabalhos. Tamura, Giampaoli e Noma (2013) propuseram um método que consiste na computação das distâncias entre o novo grupo e os grupos com efeitos aleatórios conhecidos, baseadas nos valores das covariáveis, denominado Método de Predição do Vizinho Mais Próximo ou NNPM (Nearest Neighbors Prediction Method), na sigla em inglês, considerando o modelo logístico misto. O objetivo deste presente trabalho foi o de estender o método NNPM para o modelo Poisson misto, além da obtenção de intervalos de confiança para as predições, para tais fins, foram propostas novas medidas de desempenho da predição e o uso da metodologia Bootstrap para a criação dos intervalos. O método de predição foi aplicado em dois conjuntos de dados reais e também no âmbito de estudos de simulação, em ambos os casos, obtiveram-se bons desempenhos. Dessa forma, a metodologia NNPM apresentou-se como um método de predição muito satisfatório também no caso Poisson misto. / Many proposals have been created in the last years for problems in the prediction of future observations in mixed models, however, there are few studies for cases that is necessary to assign random effects values for new groups. Tamura, Giampaoli and Noma (2013) proposed a method that computes the distances between a new group and groups with known random effects based on the values of the covariates, named as Nearest Neighbors Prediction Method (NNPM), considering the mixed logistic model. The goal of this dissertation was to extend the NNPM for the mixed Poisson model, in addition to obtaining confidence intervals for predictions. To attain such purposes new prediction performance measures were proposed as well as the use of Bootstrap methodology for the creation of intervals. The prediction method was applied in two sets of real data and in the simulation studies framework. In both cases good performances were obtained. Thus, the NNPM proved to be a viable prediction method also in the mixed Poisson case.
70

Introducing complex dependency structures into supervised components-based models / Structures de dépendance complexes pour modèles à composantes supervisées

Chauvet, Jocelyn 19 April 2019 (has links)
Une forte redondance des variables explicatives cause de gros problèmes d'identifiabilité et d'instabilité des coefficients dans les modèles de régression. Même lorsque l'estimation est possible, l'interprétation des résultats est donc extrêmement délicate. Il est alors indispensable de combiner à leur vraisemblance un critère supplémentaire qui régularise l'estimateur. Dans le sillage de la régression PLS, la stratégie de régularisation que nous considérons dans cette thèse est fondée sur l'extraction de composantes supervisées. Contraintes à l'orthogonalité entre elles, ces composantes doivent non seulement capturer l'information structurelle des variables explicatives, mais aussi prédire autant que possible les variables réponses, qui peuvent être de types divers (continues ou discrètes, quantitatives, ordinales ou nominales). La régression sur composantes supervisées a été développée pour les GLMs multivariés, mais n'a jusqu'alors concerné que des modèles à observations indépendantes.Or dans de nombreuses situations, les observations sont groupées. Nous proposons une extension de la méthode aux GLMMs multivariés, pour lesquels les corrélations intra-groupes sont modélisées au moyen d'effets aléatoires. À chaque étape de l'algorithme de Schall permettant l'estimation du GLMM, nous procédons à la régularisation du modèle par l'extraction de composantes maximisant un compromis entre qualité d'ajustement et pertinence structurelle. Comparé à la régularisation par pénalisation de type ridge ou LASSO, nous montrons sur données simulées que notre méthode non seulement permet de révéler les dimensions explicatives les plus importantes pour l'ensemble des réponses, mais fournit souvent une meilleure prédiction. La méthode est aussi évaluée sur données réelles.Nous développons enfin des méthodes de régularisation dans le contexte spécifique des données de panel (impliquant des mesures répétées sur différents individus aux mêmes dates). Deux effets aléatoires sont introduits : le premier modélise la dépendance des mesures relatives à un même individu, tandis que le second modélise un effet propre au temps (possédant donc une certaine inertie) partagé par tous les individus. Pour des réponses Gaussiennes, nous proposons d'abord un algorithme EM pour maximiser la vraisemblance du modèle pénalisée par la norme L2 des coefficients de régression. Puis nous proposons une alternative consistant à donner une prime aux directions les plus "fortes" de l'ensemble des prédicteurs. Une extension de ces approches est également proposée pour des données non-Gaussiennes, et des tests comparatifs sont effectués sur données Poissonniennes. / High redundancy of explanatory variables results in identification troubles and a severe lack of stability of regression model estimates. Even when estimation is possible, a consequence is the near-impossibility to interpret the results. It is then necessary to combine its likelihood with an extra-criterion regularising the estimates. In the wake of PLS regression, the regularising strategy considered in this thesis is based on extracting supervised components. Such orthogonal components must not only capture the structural information of the explanatory variables, but also predict as well as possible the response variables, which can be of various types (continuous or discrete, quantitative, ordinal or nominal). Regression on supervised components was developed for multivariate GLMs, but so far concerned models with independent observations.However, in many situations, the observations are grouped. We propose an extension of the method to multivariate GLMMs, in which within-group correlations are modelled with random effects. At each step of Schall's algorithm for GLMM estimation, we regularise the model by extracting components that maximise a trade-off between goodness-of-fit and structural relevance. Compared to penalty-based regularisation methods such as ridge or LASSO, we show on simulated data that our method not only reveals the important explanatory dimensions for all responses, but often gives a better prediction too. The method is also assessed on real data.We finally develop regularisation methods in the specific context of panel data (involving repeated measures on several individuals at the same time-points). Two random effects are introduced: the first one models the dependence of measures related to the same individual, while the second one models a time-specific effect (thus having a certain inertia) shared by all the individuals. For Gaussian responses, we first propose an EM algorithm to maximise the likelihood penalised by the L2-norm of the regression coefficients. Then, we propose an alternative which rather gives a bonus to the "strongest" directions in the explanatory subspace. An extension of these approaches is also proposed for non-Gaussian data, and comparative tests are carried out on Poisson data.

Page generated in 0.0893 seconds